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Minimizing Memory Utilization of Real-Time Task Sets in Single andMulti-Proessor Systems-on-a-hipPaolo Gai, Giuseppe Lipari, Maro Di NataleReTiS Lab, Suola Superiore di Studi e Perfezionamento S. Anna { Pisa,fpj,lipari,marog�sssup.itAbstratThe researh on real-time software systems has pro-dued algorithms that allow to e�etively shedule sys-tem resoures while guaranteeing the deadlines of theappliation and to group tasks in a very short numberof non-preemptive sets whih require muh less RAMmemory for stak. Unfortunately, up to now the re-searh fous has been on time guarantees rather thanthe optimization of RAM usage. Furthermore, thesetehniques do not apply to multiproessor arhitetureswhih are likely to be widely used in future miroon-trollers.This paper presents a fast and simple algorithm forsharing resoures in multiproessor systems, togetherwith an innovative proedure for assigning preemp-tion thresholds to tasks. This allows to guarantee theshedulability of hard real-time task sets while minimiz-ing RAM usage. The experimental part shows the e�e-tiveness of a simulated annealing-based tool that allowsto �nd a near-optimal task alloation. When used inonjuntion with our preemption threshold assignmentalgorithm, our tool further redues the RAM usage inmultiproessor systems.1. IntrodutionMany embedded systems are beoming inreasinglyomplex in terms of funtionality to be supported.From an analysis of future appliations in the ontextof automotive systems [9℄ it is lear that a standarduniproessor miroontroller arhiteture will not beable to support the needed omputing power even tak-ing into aount the IC tehnology advanes.To inrease omputational power in real-time sys-tems there are two possible ways: inrease the pro-essor speed or inrease the parallelism of the arhi-teture. The �rst option requires the use of ahingor deep pipelining whih su�er from serious drawbaksin the ontext of real-time embedded systems. There-

Figure 1. The Janus Dual Processor systemfore, the best option and the future of many embeddedappliations seems to rely on the adoption of multiple-proessor-on-a-hip arhitetures.The Janus system, (see the sheme of Figure 1) de-veloped by STMiroeletronis in ooperation with Pa-rades [9℄, is an example of a dual-proessor platformfor power train appliations featuring two 32-bit ARMproessors onneted by a rossbar swith to 4 mem-ory banks and two peripheral buses for I/O proessing.The system has been developed in the ontext of theMADESS1 projet. The appliations must satisfy avery demanding requirement: in addition to real-timepreditability, the OS and the appliation must use thesmallest possible amount of RAM memory. RAM is ex-tremely expensive in terms of hip spae and impatsheavily on the �nal ost.In the design of the kernel mehanisms for theERIKA kernel [10℄, it had been lear from the be-ginning that the hoie of the real-time shedulingdisipline inuenes both the memory utilization andthe system overhead: for example, seleting a non-preemptive sheduling algorithm an greatly redue theoverall requirement of stak memory whereas using apreemptive algorithm ould inrease the proessor uti-lization.The idea behind this work is based on the onept ofnon-interleaved exeution. As explained in Setion 4,using a protool alled Stak Resoure Poliy (SRP) [1℄,1http://www.madess.nr.it/Summary.htm



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 2task exeutions are perfetly nested: if task A preemptstask B, it annot happen that B exeutes again beforethe end of A. In this way, it is possible to use a singlestak for all the exeution frames of the tasks.Next, omes the following observation: if task pre-emption is limited to our only between seleted taskgroups, it is possible to bound the maximum number oftask frames onurrently ative in the stak, thereforereduing the maximum requirement of RAM spae forstak (whih is the only way the OS an limit RAMrequirements).Although this idea is not new (see [18℄), we extendedit along many diretions. More spei�ally, a ompletemethodology for minimizing the memory utilizationof real-time task sets, ommuniating through sharedmemory, in uniproessor and multiproessor systemsis presented in this paper. First, the uniproessorase is onsidered, and the following results are pre-sented: a novel sheduling algorithm, alled SRPT,that allows the use of one single stak for all the real-time tasks under dynami priority sheduling (EarliestDeadline) shemes; an optimization proedure for as-signing the sheduling parameters (preemption thresh-olds and grouping of tasks in non-preemptive sets) so tominimize the maximum stak size without jeopardizingthe shedulability of the task set.Then, the previous results are extended to multipro-essor systems. In partiular, we developed: a novelsheduling algorithm alled MSRP, that allows real-time tasks, alloated on di�erent proessor, to ommu-niate/interat through shared memory; eah task isstatially alloated to one proessor, and all tasks onone proessor share the same stak; an optimizationproedure for assigning tasks to proessors and for as-signing the sheduling parameters, so to minimize theoverall stak size.The remaining setions are organized as follows.Setion 2 presents some previous related work. Setion3 ontains the de�nitions and the assumptions. Se-tion 4 introdues the SRP and Preemption Thresholdsmehanisms on whih our work is based. Setion 5 dis-usses our integration of SRP and Preemption thresh-olds on top of an EDF sheduler. Setion 6 ontainsthe disussion on how to optimize memory and CPUresoures in uniproessor systems. Setion 7 disussesthe MSRP Sheduling Algorithm. Setion 8 ontainsthe desription of our Simulated Annealing approahto the task alloation problem. Setion 9 ends the pa-per with the disussion on the experimental results forsingle and multiproessor systems.2. Related workThe idea of assigning eah task a preemption thresh-old and to group tasks in non-preemptive sets has been

formulated by Saksena and Wang [18℄. The meha-nism has been implemented (in a proprietary form) inthe SSX kernel from REALOGY [6℄ and the ThreadXkernel from Express Logi [8℄.The algorithms presented in this paper are based onthe Stak Resoure Poliy (SRP), a synhronizationprotool presented by Baker in [1℄. The SRP is similarto the Priority Ceiling Protool of Sha, Lehozky andRajkumar (see [19℄), but has the additional propertythat a task is never bloked one it starts exeuting.The problem of sheduling a set of real-time taskswith shared resoures on a multiproessor system isquite omplex. One of the most ommon approahesis to statially alloate tasks to proessors and to de-�ne an algorithm for inter-proessor ommuniation.Following this approah, the problem an be dividedinto two sub-problems: de�ne a sheduling algorithmplus a synhronization protool for global resoures;and provide an o�-line algorithm for alloating tasksto proessors.Solutions have been proposed in the literature forboth sub-problems. The Multiproessor Priority Ceil-ing Protool (MPCP) has been proposed by Rajku-mar in [17℄ for sheduling a set of real-time taskswith shared resoure on a multi-proessor. It extendsthe Priority Ceiling Protool [19℄ for global resoures.However, it is rather omplex and does not guaran-tee that the exeution of tasks will not be interleaved(tasks annot share the same stak). Moreover, no al-loation algorithm is proposed.The problem of alloating a set of real-time tasks tom proessors has been proved NP-hard in [12℄ and [7℄,even when tasks are onsidered independent. Severalheuristi algorithms have been proposed in the litera-ture [4, 16℄, but none of them expliitly onsiders tasksthat interat through mutually exlusive resoures.In this paper, we bring ontributions to both sub-problems. In Setion 7, we propose an extension of theSRP protool to multiproessor systems. In Setion 8we propose a simulated annealing based algorithm foralloating tasks to proessors.3. Basi assumptions and terminologyOur system onsists of a set T = f�1; �2; : : : ; �ngof real time tasks to be exeuted on a set P =fP1; : : : ; Pmg of proessors. First, we onsider the aseof a uniproessor, and then extend the results to thease of multi-proessor systems. The subset of tasksassigned to proessor Pk will be denoted by TPk � T .A real time task �i is a in�nite sequene of jobs (orinstanes) Ji;j . Every job is haraterized by a releasetime ri;j , an exeution time i;j and a deadline di;j .A task an be periodi or sporadi. A task is pe-riodi if the release times of two onseutive jobs are



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 3separated by a onstant period; a task is sporadi whenthe release times of two onseutive job are separatedby a variable time interval, with a lower bound, alsoalled minimum interarrival time.Without loss of generality, we use the same symbol�i to indiate the period of a periodi task and theminimum interarrival time of a sporadi task �i. In thefollowing a task will be haraterized by a worst aseexeution time Ci = maxfi;jg and a period �i. Weassume that the relative deadline of a task is equal to�i: thus, di;j = ri;j + �i.Tasks an aess mutually exlusive resouresthrough ritial setions. Let R = f�1; : : : ; �pg be theset of shared resoures. The k{th ritial setion of task�i on resoure �j is denoted by �jik and its maximumduration is denoted by !jik.4. Bakground
4.1. Stack Resource Policy (SRP)The Stak Resoure Poliy was proposed by Bakerin [1℄ for sheduling a set of real-time tasks on a sin-gle proessor. It an be used togheter with the RateMonotoni (RM) sheduler or with the Earliest Dead-line First (EDF) sheduler. Aording to the SRP, ev-ery real-time (periodi and sporadi) task �i is assigneda priority pi and a stati preemption level �i, suh thatthe following essential property holds:�i is not allowed to preempt �j , unless �i > �j .Under EDF and RM, the previous property is veri�edif preemption levels are inversely proportional to theperiods of tasks.Every resoure �k is assigned a stati2eiling de�ned as:eil(�k) = maxif�i j �i uses �kg: Finally, a dynamisystem eiling is de�ned as�s(t) = max[feil(�k) j �k is urrently lokedg[ f0g℄:Then, the SRP sheduling rule states that: \a job isnot allowed to start exeuting until its priority is thehighest among the ative jobs and its preemption levelis greater than the system eiling". The SRP ensuresthat one a job is started, it annot be bloked untilompletion; it an only be preempted by higher prior-ity jobs. However, the exeution of a job Ji;k with thehighest priority in the system ould be delayed by alower priority job, whih is loking some resoure, andhas raised the system eiling to a value greater than orequal to the preemption level �i. This delay is alledbloking time and denoted by Bi. Given the maximumbloking time for eah task, it is possible to perform a2In the ase of multi-units resoures, the eiling of eah re-soure is dynami as it depends on the urrent number of freeunits.

shedulability test, depending on the sheduling algo-rithm.In [1℄ Baker proposed the following shedulabilityondition for the EDF sheduler:8i; 1 � i � n nXk=1 Ck�k + Bi�i � 1 (1)The maximum loal bloking time for eah task �ian be alulated as the longest ritial setion �kjh a-essed by tasks with longer periods and with a eilinggreater than or equal to the preemption level of �i.Bi = max�j2T ;8hf!kjh j�i > �j ^ �i � eil(�k)g: (2)The Stak Resoure Poliy has several interestingproperties. It prevents deadlok, bounds the maximumbloking times of tasks, redues the number of ontextswithes and an be easily extended to multi-unit re-soures. From an implementation viewpoint, it allowstasks to share a unique stak. In fat, a task neverbloks its exeution: it simply annot start exeutingif its preemption level is not high enough. Moreover,the implementation of the SRP is straightforward asthere is no need to implement waiting queues.However, SRP does not sale to multiproessor sys-tems. In setion 7 we will propose a possible extensionof the SRP to be used in multi-proessor systems.
4.2. Preemption ThresholdsGiven a non-interleaved exeution of the appliationtasks, the use of a preemptive sheduling algorithmmakes the maximum number of task frames on thestak equal to the number of priority levels, whereasusing a non-preemptive algorithm there an be onlyone frame on the stak. However, a non-preemptive al-gorithm in general is less responsive and ould produean infeasible shedule. Hene, the goal is to �nd analgorithm that seletively disables preemption in orderto minimize the maximum stak size requirement whilerespeting the shedulability of the task set.Based on this idea, Wang and Saksena, [18℄ devel-oped the onept of Preemption Threshold : eah task�i is assigned a nominal priority �i and a preemptionthreshold i with �i � i. When the task is ativated,it is inserted in the ready queue using the nominal pri-ority; when the task begins exeution, its priority israised to its preemption threshold; in this way, all thetasks with priority less than or equal to the preemp-tion threshold of the exeuting task annot make pre-emption. Aording to [18℄, we introdue the followingde�nitions:De�nition 1 Two tasks �i and �j are mutually non-preemptive if (�i � j) ^ (�j � i).



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 4De�nition 2 A set of tasks G = f�1; �2; : : : ; �mg is anon-preemptive group if, for every pair of tasks �j 2G and �k 2 G, �j and �k are mutually non{preemptive.By assigning eah task the appropriate preemptionthreshold, we an redue the number of preemptionsin the system without jeopardizing the shedulabil-ity of the tasks set. Given an assignment of preemp-tion thresholds, the task set an be partitioned intonon{preemptive groups. Obviously, a small number ofgroups results in a lower requirement for the stak size.In the following, we will show how it is possible toeÆiently implement the Preemption Threshold meh-anism using the SRP, and extend it to be used underEDF.5. Integrating Preemption Thresholdwith the SRPOur approah is based on the observation that thethreshold values used in the Preemption Thresholdmehanism are very similar to the resoure eilings ofthe SRP. In the SRP, when a task aesses a ritialsetion, the system eiling is raised to the maximumbetween the urrent system eiling and the resoureeiling. In this way, an arriving task annot preemptthe exeuting task unless its preemption level is greaterthan the urrent system eiling. This mehanism anbe thought as another way of limiting preemptability.Thus, if we want to make task �i and task �j mutu-ally non-preemptive, we an let them share a pseudo-resoure �k: the eiling of resoure �k is the maximumbetween the preemption levels of �i and �j . At runtime, instanes of �i or �j will lok �k when they startexeuting and hold the lok until they �nish.Suppose task �i needs a set of pseudo-resoures�1; : : : ; �h. When �i starts exeution, it loks all ofthem: in the SRP, this orresponds to raising the sys-tem eiling to maxk eil(�k). We de�ne this value as thepreemption threshold i of task �i. Now, the problemof �nding an optimal assignment of thresholds to tasksis equivalent to �nding the set of pseudo-resoures foreah task. In the remaining of this paper, we will indi-ate this modi�ation of the SRP as SRPT (SRP withThresholds).Sine SRPT an be thought as an extension of theSRP that add pseudo-resoures ompatibles with thetraditional SRP resoures, it an be easily shown thatSRPT retains all the properties of SRP.The feasibility test for SRPT is given by Equation(1), exept for the omputation of the bloking time,that is: Bi = max(Bloali ; Bpseudoi ), where Bloali andBpseudoi are respetively the bloking time due to lo-al resoures and the bloking time due to pseudo-resoures.

Bloking due to loal resoures. Assuming relativedeadlines equal to periods, the maximum loal blokingtime for eah task �i an be alulated using Equation(2). This an be easily proved: supposing the abseneof pseudo-resoures, the SRPT redues to the SRP, andthe bloking times an be alulated using equation 2.Bloking due to pseudo-resoures. A task �i mayexperiene an additional bloking time due to the non-preemptability of lower priority tasks. This blokingtime an be omputed as follows:Bpseudoi = max�j2TPifCj j�i > �j ^ �i � jgThe non-preemptability of lower task is due to theuse of pseudo-resoures. The formula of Bpseudoi isanother way of writing formula 2, beause: i ismaxk eil(�k) = eil(�k0) where k0 2 fk : i =eil(�k)g and Ci is the ritial setion duration for re-soure k0 (remember that pseudo-resoures are lokedwhen an instane starts and is unloked when an in-stane �nish; moreover, we an onsider only the k0ritial setion for eah task sine they all have lengthequal to Ci and 8 k; eil(�k) � eil(�k0) = i.The SRPT presents two main advantages: it seam-lessly integrates aess to mutually exlusive resouresand preemption threshold with a very little implemen-tation e�ort and with no additional overhead, and itpermits to implement the preemption threshold meh-anism on top of EDF. The last issue an lead to fur-ther optimizations: the EDF sheduling algorithm hasbeen proven optimal both in the preemptive [14, 2, 3℄and in the non-preemptive3 version [11℄; furthermore,in [13℄ the authors laim that EDF+SRP is an opti-mal algorithm for sheduling sporadi task sets withshared resoures. Sine EDF is optimal, it is morelikely that a given assignment of preemption thresholdsprodues a feasible shedule. Therefore, we expet abetter hane to trade proessor utilization with a re-dution in the maximum stak spae requirement byreduing preemption.6. Optimizing stak usage in Uniproes-sorsIn this setion we present an algorithm that allowsthe optimization of the total stak spae requirementof a set of tasks using the SRPT protool on uniproes-sor systems. To simplify the presentation, we do notonsider here the use of shared resoures. The om-plete algorithm for multiproessors will be presentedin Setion 8.3The non-preemptive version of the EDF algorithm is optimalfor sporadi task sets among all the non-idle (work onserving)non-preemptive sheduling algorithms.



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 5The algorithm requires eah task to be harater-ized by its worst ase exeution time Ci, its period �i,its maximum stak requirement (in bytes) si, its pri-ority �i and its preemption level �i. At the end of theoptimization algorithm, eah task �i will be assigned apreemption threshold i and will be inserted in a non-preemptive group Gk. The goal of the optimizationalgorithm is:step 1 to �nd an optimal assignment of preemptionthresholds to tasks, and step 2 to �nd an optimal set ofnon-preemptive groups that minimizes the total staksize, maintaining the feasibility of the shedule.The algorithm selets a possible assignment of pre-emption thresholds and tests the feasibility of thesheduling using Equation (1). Our optimization algo-rithm works as follows: tasks are ordered by dereasingpreemption level �; we use the algorithm desribed in[18℄ to explore the spae of possible threshold assign-ments4: starting with the task having the highest pre-emption level, we try to raise the preemption threshold of eah task, until the task set remains shedulableaording to Equation (1). Then, given a feasible as-signment of preemption thresholds, we partition thetask set into non-preemptive groups and ompute themaximum stak size. Our algorithm di�ers from theone in [18℄ in the �nal optimization objetive: whilethe algorithm in [18℄ tries to minimize the number ofnon-preemptive groups, our algorithm aounts for thestak usage of eah task and tries to minimize the to-tal amount of required stak. In fat, there are asesin whih the minimum overall stak requirement doesnot orrespond to the minimum number of groups.The algorithm that is used to partition the task setinto preemption groups is more omplex and an beonly outlined as follows:Step 1: Tasks are ordered by inreasing preemptionthresholds; ties are broken in order of dereasing stakrequirements.Step 2: The algorithm starts by �nding the maximalgroup for eah task. A maximal group for task �i is thebiggest non-preemptive group that an be reated us-ing �i as a representative task. A representative task fora non-preemptive group is the task having the small-est threshold among all tasks in the group. Maximalgroups are omputed with the algorithm shown in Fig-ure 2.Step 3: Then, the algorithm alls a reursive funtionthat alloates all tasks to non-preemptive groups usingthe information omputed in the previous step. Thefuntion, alled reate group(), reursively omputesall solutions onsisting in the partitioning of tasks intoa set of non-preemptive groups Gi.The funtion reate group(g, min stak, sum)is the ore of the proedure. Its pseudo ode desrip-4Sine EDF is optimal, there is no need to �nd an initialpriority assignment for the task set.

foreah �i in T fMi = emptylist;foreah �j in f�k : �k 2 T and k > igif (�j � i) insert(Mi; j);g
Figure 2. Finding the maximal groups.tion is outlined in Figure 3. At this point eah task isassigned a new index whih orresponds to its positionin the order of preemption thresholds (starting from0).When alled, the funtion omputes a set of newgroups starting from Gg where g is the index of thegroup's representative task; min stak points to theurrent minimum for the overall stak requirementsand sum to the (partial) stak requirement for the so-lution being omputed.The �rst time the funtion is alled, g has the value0 (the algorithm starts from the task with the lowestthreshold), min stak refers a variable ontaining thesum �isi of all stak requirements (the worst ase stakrequirement), and sum equals 0 (no task alloated toany group yet). No group Gi has been omputed yet.Lines 9-31 are used to seletively extrat a subsetof Mg that will be inserted into Gg for testing the op-timality of a solution. The subsets that are tried asandidate for Gg are all the possible subset of Mg ,plus the representative task �g .Please also note that in the funtion reategroup()the index i always refers to the position in list Mgrather than Gg .At line 7 the group Gg is initialized (the represen-tative task �g is inserted in its group). The i variable(initialized at the index of the �rst element in Mg line8) is used to mark the next index of the andidate rep-resentative for a new group.Lines 10-12 insert all the unalloated tasks belong-ing to Mg and following �i into the group Gg . Line13 omputes the maximum stak requirement of thenon-preemptive group Gg , and line 14 adds it to thetemporary aumulator new sum.If there remains a task to be alloated, line 16 �nds atask that will be the representative for the next group,and line 17 alls reursively the reategroup() fun-tion with g set to that task index, and sum set to theurrent stak usage.The rest of the funtion implements the leanup be-fore a new iteration or baktraking for searhing anew solution. This means removing some tasks fromthe urrent group and setting up new representativetasks for a di�erent group partitioning. If the urrentgroup Gg is not omposed by its representative taskonly, line 19 removes all tasks from the tail of Gg untilthe stak requirement of the group dereases (the task



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 6with the largest stak requirement is removed). Next,the pointer i is set to the position of the task follow-ing the last task extrated from Gg (line 21) to allowtask �i to be skipped at the next iteration, and to be-ome a representative task in the following reursiveall. If all tasks have been assigned to a group then anew andidate solution has been omputed and mustbe evaluated as a andidate optimum (lines 24-26). Ifthe urrent group is the last group, it is emptied (line28), sine it is pointless to split it.1: reategroup(int g, int *min stak, int sum)2: f3: task index i;4: int m, newsum;5: bool notYetDone = true;6:7: initialize(Gg);8: i = firstelement(Mg);9: do f10: foreah j in fk : k � i in listMgg11: if (�j not already alloated)12: insertlast(Gg,�j);13: m = findMaximumStakUsage(Gg);14: newsum = sum + m;15: if (there are task to be alloated ) f16: f = findFirstFreeTask(g);17: reategroup(f, min stak, newsum);18: if (Gg != f�gg) f19: i = lastelement(Gg);20: removeFromTail(Gg);21: i = nextelement(Mg,i);22: g else notYetDone = false;23: g else24: if (newsum < *min stak) f25: NewOptimumFound();26: *min stak = newsum;27: g28: Remove all tasks (Gg);29: notYetDone = false;30: g31: g while (notYetDone);32: remove (Gg);33: g
Figure 3. The create group() recursive func-
tion.The implementation of the algorithm is slightlymore omplex, sine a lot of e�ort is spent in orderto optimize the searh by pruning the searh tree andbak-traking before reahing a higher ost solution.In the worst ase, the omplexity of the algorithm isexponential in the number of tasks. However, sine thenumber of groups in the optimal solution is small, thenumber of ombinations to evaluate is limited. Thanksto the eÆieny of the pruning, the number of solu-tions is further redued. In our experiments, the av-erage number of explored solutions (leafs) is quite loweven for large task sets (<160). For typial embeddedsystems, where the number of tasks rarely exeeds 20,

the problem is tratable with modern omputers.7. Sharing Resoures in MultiproessorsWhen onsidering multiproessor symmetri ar-hitetures, we wish to keep the nie properties of EDFand SRP, that is high proessor utilization, preditabil-ity and perfetly nested task exeutions on loal pro-essors. Unfortunately, the SRP annot be diretly ap-plied to multiproessor systems.In this setion, we �rst propose an extension of theSRP protool to multi-proessor systems and a shedu-lability analysis for the new poliy. In the next setion,we propose a simulated annealing based algorithm foralloating tasks to proessors that minimizes the over-all memory requirements.
7.1. Multiprocessor Stack Resource PolicySuppose that tasks have already been alloated toproessors. Depending on this alloation, resoures anbe divided in loal and global resoures. A loal re-soure is used only by tasks belonging to the sameproessor, whereas a global resoure is used by taskbelonging to di�erent proessors.We onentrate our e�orts on the poliy for aess-ing global resoures. If a task tries to aess a globalresoure and the resoure is already loked by someother task on another proessor, there are two possi-bilities: the task is suspended (as in the MPCP algo-rithm), or the task performs a busy wait (also alledspin lok). We want to maintain the properties of theSRP: in partiular, we want to let all tasks belonging toa proessor to share the same stak. Hene, we hoosethe seond solution. However, the spin lok time iswasted time and should be redued as muh as possi-ble (the resoure should be freed as soon as possible).For this reason, when a task exeutes a ritial setionon a global resoure, its priority is raised to the maxi-mum priority on that proessor and the ritial setionbeomes non-preemptable.In order to simplify the implementation of the al-gorithm, the amount of information shared betweenproessors is minimal. For this reason, the priorityassigned to a task when aessing resoures does notdepend on the status of the tasks on other proessorsor on their priority. The only global information is thestatus of the global resoures.The MSRP algorithm works as follows:Rule 1: For loal resoures, the algorithm is the sameas the SRP algorithm. In partiular, we de�ne a pre-emption level for every task, a eiling for every loalresoure, and a system eiling �k for every proessorPk.Rule 2: Tasks are allowed to aess loal resourethrough nested ritial setions. It is possible to nest
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Table 1. The example task set.loal and global resoures. However, it is not possibleto nest global ritial setions, otherwise a deadlokan our.Rule 3: For eah global resoure, every proessor Pkde�nes a eiling greater than or equal to the maximumpreemption level of the tasks on Pk.Rule 4: When a task �i, alloated to proessor Pkaesses a global resoure �j , the system eiling �k israised to eil(�j) making the task non{preemptable.Then, the task heks if the resoure is free: in thisase, it loks the resoure and exeutes the ritial se-tion. Otherwise, the task is inserted in a FCFS queueon the global resoure, and then performs a busy wait.Rule 5: When a task �i, alloated to proessor Pk,releases a global resoure �j , the algorithm heks theorresponding FCFS queue, and, in ase some othertask �j is waiting, it grants aess to the resoure, oth-erwise the resoure is unloked. Then, the system eil-ing �k is restored to the previous value.Example. Consider a system onsisting of two proes-sors and �ve tasks as shown in Figure 4. Tasks �1, �2and �3 are alloated to proessor P1: task �3 uses loalresoure �1, task �2 uses resoures �1 and �2 throughnested ritial setions, and �1 does not use any re-soure. Tasks �4 and �5 are alloated to proessor P2:task �4 uses the global resoure �1 and �5 does not usesresoures. The parameters of the tasks are reported inTable 1. The eiling for resoure �1 is 2. The eilingfor resoure �2 on proessor P1 is 3, and on proes-sor P2 is 2. A possible shedule is shown in Figure 5.At time t = 3, task �2 is bloked beause its preemp-tion level �2 = 2 is equal to the urrent system eiling�1 = 2 on proessor P1. At time t = 5, task �3 loksresoure �2 and raises the system eiling �1 to 3. Attime t = 6, task �4 tries to aess the global resoure�2 whih is urrently loked by �2. Thus, it raises thesystem eiling of proessor P2 to 2 and performs a busywait. At time t = 7, both �1 and �5 are bloked, be-ause the system eilings of the two proessors are setto the maximum. At time t = 8, task �3 releases theglobal resoure �2 and task �4 an enter the ritialsetion on �2. At the same time, the system eilingof proessor P1 is set bak to 2, and task �1 an makepreemption.
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Figure 4. Structure of the example.

τ

2

1τ

4τ

5τ

2 4 6 8 10 12 14 16 18 20 22

1ρ 1ρ

1ρ

2ρ

2ρ

2ρ

3

τ

0

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Figure 5. Example of schedule produced by
the MSRP on two processors.

7.2. Schedulability analysis of the MSRPFirst, we give an upper bound on the time that task�i, alloated to proessor Pk, an spend waiting for aglobal resoure �j . In the following, we refer to thistime as spin lok time and denote it as spin(�j ; Pk).Lemma 1 The spin lok time that every task alloatedto proessor Pk needs to spend for aessing a globalresoure �j 2 R is bounded from above by:spin(�j ; Pk) = Xp2fP�Pkg max�i2Tp;8h!jih:Basially, the spin lok time inrements the dura-tion !jih of every global ritial setion �jih, and, onse-quently, the worst ase exeution time Ci of �i. More-over, it also inrements the bloking time of the tasksalloated to the same proessor with a preemption levelgreater than �i.We de�ne totalspini as the maximum total spin loktime experiened by task �i. From the previous lemma,totalspini =X�jih spin(�j ; Pi)We also de�ne the atual worst ase omputationtime C 0i for task �i as the worst ase omputation timeplus the total spin lok time:C 0i = Ci + totalspini



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 8Now, we demonstrate that the MSRP maintains thesame basi properties of the SRP, as shown by the fol-lowing theorems.Theorem 1 One a job starts exeuting it annot bebloked, but only preempted by higher priority jobs.Note that a job an be delayed before starting ex-eution by the fat that the system eiling is greaterthan or equal to its preemption level. This delay isalled bloking time. The following theorem gives anupper bound to the bloking time of a task.Theorem 2 A job an experiene a bloking time atmost equal to the duration of one ritial setion (plusthe spin lok time, if the resoure is global) of a taskwith lower preemption level.It is noteworthy that the exeution of all the tasks al-loated on a proessor is perfetly nested (beause onea task starts exeuting it annot be bloked), thereforeall tasks an share the same stak.For simpliity, the bloking time for a task an bedivided into bloking time due to loal and global re-soures. In addition, if we onsider also the preemptionthreshold mehanism, we have to take into aount alsothe bloking time due to the pseudo-resoures:Bi = max(Bloali ; Bglobali ; Bpseudoi )where Bloali , Bglobali and Bpseudoi are:Bloking time due to loal resoures: This blok-ing time is equal to the longest ritial setion �kjhamong those (of a task �j) with a eiling greater thanor equal to the preemption level of �i:Bloali = maxj;h;kf!kjh j (�j 2 TPi) ^ (�k loal to Pi)^ (�i > �j) ^ (�i � eil(�k))gBloking time due to global resoures: Assumethe task �i, assigned to proessor Pi, is bloked by atask �j (�j < �i) whih is assigned to the same pro-essor Pi, and whih is waiting for, or it is inside to,a global ritial setion �kjh. In this ase, the blokingtime for task �i is,Bglobali = maxj;h;kf!kjh + spin(�k; Pi) j (�j 2 TPi)^ (�k global) ^ (�i > �j)gBloking time due to pseudo resoures: As ex-plained in the previous setions, this bloking time isdue to the fat that a task �i an be mutually non{preemptive with other tasks on the same proessor:here, the only di�erene with the SRPT is that wehave to onsider the atual worst ase exeution timeinstead of the worst ase exeution time.Bpseudoi = max�j2TPifC 0j j �i > �j ^ �i � jg

Theorem 3 Suppose that tasks on proessor Pk areordered by dereasing preemption level. The shedula-bility test is as follows:8 Pk 2 P TPk = f�1; : : : ; �nkg 8i = 1; : : : ; nkiXl=1 C 0l�l + Bi�i � 1Please note that the bloking fator inuenes onlyone element of the guarantee formula, whereas the spinlok time inuenes both the bloking time and theworst ase exeution time. This implies that, when de-signing an alloation algorithm, one of the goals is toredue the spin lok time as muh as possible. Anothernoteworthy observation is that, using the MSRP, eahproessor works almost independently from the oth-ers. In partiular, it is possible to easily apply this al-gorithm to non{homogeneous multiproessor systems.For the task set of the previous example, the total spinlok time tsi, the atual worst ase exeution time C 0i ,the loal and global bloking times are reported inTable 1. The MSRP has many advantages over theMPCP. Unlike MPCP, with the MSRP it is possible touse one single stak for all the tasks alloated to thesame proessor. Moreover, the MPCP is more omplexand diÆult to implement than the MSRP. In fat, theMSRP does not need semaphores or bloking queuesfor loal resoures, whereas global resoures need only aFIFO queue (an eÆient implementation an be foundin [5℄. Finally, the MSRP, like the SRP, tends to reduethe number of preemptions in the systems, hene thereis less overhead. However, this omes at the ost of apotentially dangerous spin lok time.8. Optimizing stak usage in Multipro-essorsGiven a task alloation, the poliies and algorithmspresented in this paper allow to searh for the optimalassignment of preemption thresholds to tasks and toseletively group tasks in order to redue RAM on-sumption. However, the �nal outome depends on thequality of the deisions taken in the task alloationphase. Moving one task from one proessor to anotheran hange the plaement of (some of) the shared re-soures aessed by it (some global resoures beomeloal and vie versa) and the �nal omposition of thenon{preemptive groups on eah proessor. Unfortu-nately, the task alloation problem has exponentialomplexity even if we limit ourselves to the simple aseof deadline-onstrained sheduling.A simulated annealing algorithm is a well-known so-lution approah to this lass of problems. Simulatedannealing tehniques (SA for short) have been used in



Proeedings of the 22nd Real-Time Systems Symposium, London, England, De. 2001. 9[20, 18℄ to �nd the optimal proessor binding for real-time tasks to be sheduled aording to �xed-prioritypoliies, in [15℄ to solve the problem of sheduling withminimum jitter in omplex distributed systems and in[18℄ to assign preemption thresholds when shedulingreal-time tasks with �xed priorities on a uniproessor.In the following we show how to transform the allo-ation and sheduling problem whih is the subjet ofthis paper into a form that is amenable to the appli-ation of simulated annealing. Our solution spae Sonsists of all possible assignments of tasks to proes-sors. We are interested in those task assignments thatprodue a feasible shedule and, among those, we seekthe assignment that has minimum RAM requirements.Therefore we need to de�ne an objetive funtion tobe minimized and the spae over whih the funtion isde�ned.The SA algorithm searhes the solution spae for theoptimal solution as follows: a transition funtion TRis de�ned between any pair of task alloation solutions(Ai; Aj) 2 S and a neighborhood struture Si is de-�ned for eah solution Ai ontaining all the solutionsthat are reahable from Ai by means of TR. A startingsolution A0 is de�ned and its ost (the value of the ob-jetive funtion) is evaluated. The algorithm randomlyselets a neighbor solution and evaluates its ost. Ifthe new solution has lower ost, then it is aepted asthe urrent solution. If it has higher ost, then it isaepted with a probability exponentially dereasingwith the ost di�erene and slowly lowered with timeaording to a parameter whih is alled temperature.Our transition funtion onsists in the random sele-tion of a number of tasks and in hanging the bindingof the seleted tasks to randomly seleted proessors.This simple funtion allows to generate new solutions(bindings) at eah round starting from a seleted so-lution. Some of the solutions generated in this waymay be non shedulable, and therefore should be even-tually rejeted. Unfortunately, if non{shedulable so-lutions are rejeted before the optimization proedureis �nished, there is no guarantee that our transitionfuntion an approah a global optimum. In fat, itis possible that every possible path from the startingsolution to the optimal solution requires going throughintermediate non-shedulable solutions.If non-shedulable solutions are aeptable as in-termediate steps, then they should be evaluated verypoorly. Therefore, we de�ne a ost funtion with thefollowing properties:1) shedulable solutions must always have energy lowerthan non{shedulable solutions;2) the energy of non shedulable solutions must be pro-portional to the maximum exess utilization resultingfrom the evaluation of formula (3) for non{shedulabletasks;3) the energy of shedulable solution must be propor-

tional to the worst ase overall RAM requirements forstak usage.If TS is the overall stak requirement, obtained byadding up the stak requirements of all tasks, and OSis the overall stak requirement, evaluated for shedu-lable sets after the omputation of optimal preemptionthresholds and task groups (see Setion 6), then ourost funtion is the following:( max8�i �Pnk=i C0kTk + BiTi � � TS non shed. assign.TS +� � (OS � TS) shed. assign.When the assignment is non shedulable, we use theresult of the guarantee test (Equation 1) as an indexof shedulability. In fat, as the system load, blokingtime or spin-lok time inrease, the system beomesless shedulable. When the assignment is shedulable,the ost funtion does not depend on proessor load butreturns a value that is proportional to the redution ofstak with respet to the total stak requirement.The � fator estimates the average ratio betweenthe stak requirements before task grouping and thestak requirements after optimization and is de�nedas: � = npu �meanstak �meangroupsntask �meanstakwhere npu is the number of CPU in the system,meanstak is the mean stak value of all tasks, mean-groups estimates the typial number of preemptiongroups on a uniproessor. The � fator has been in-trodued to smooth the steep inrease in the ost fun-tion when going from shedulable solutions to non{shedulable assignments. This improves the hanesfor the simulated annealing algorithm to esape fromloal minima (whih might require aepting a non{shedulable solution).The experimental results (next setion) show the ef-fetiveness of our SA-based binding algorithm whensimulating task sets sheduled on 4-proessor system-on-a-hip arhitetures.9. Experimental evaluationWe extensively evaluated the performane of our op-timization algorithms on a wide range of task set on-�gurations.Uniproessor experiments In every experiment,tasks' periods are randomly hosen between 2 and 100.The total system load U ranges from 0.5 to 0.99, witha step of 0.01: the worst ase exeution time of everytask is randomly hosen suh that the utilization fa-tors sums up to U. The number of tasks in the taskset ranges from 1 to 100, and the stak frame size isa random variable hosen between 10 and 100 bytesexepts for the experiments of Figure 7 in whih the
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Figure 6. Average number of preemption
groups for different task set sizes.
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Figure 7. Ratio of improvement given by our
optimization algorithm.stak size ranges between 10 and 400 bytes. In Figure6 the average number of preemption groups is shown.Note that the �gure has a maximum for NTASK= 4 and U=0.99. As the number of tasks inreases,the number of preemption groups tends to 2; this anbe explained with the fat that, when the number oftasks grows, eah task has a smaller worst ase exe-ution time; hene, the shedule produed by a non-preemptive sheduler does not di�er signi�antly fromthe shedule produed by a preemptive sheduler. Onthe ontrary, with a small number of tasks, the worstase exeution time of eah task is omparable withthe period; hene it is more diÆult to �nd a feasiblenon-preemptive shedule.Figure 6 shows how the average number of preemp-tion groups is almost independent of the utilizationfator and of the number of tasks, exept for a verylimited number of tasks (< 10) and a high utilizationfator (> 0:8).The average number of groups is not only onstantbut also very lose to 2. This means that the appli-ation of Preemption Threshold tehniques, together

with EDF, allows a great redution in the number ofpreemption levels and great savings in the amount ofRAM needed for saving the task stak frames. RAMredution in the order of 3 to 16 times less the originalrequirements an easily be obtained.In Figure 7, we ompare the optimization algorithmpresented in [18℄ (whih does not take into aount thestak frame size of the tasks) and our algorithm, toshow the improvement in the optimization results. The�gure shows the fration of experiments where the opti-mal solution has been found by the original algorithm.The ratio appears as a funtion of the system load andfor di�erent stak sizes. In most ases (from 60% to80%), the algorithm proposed in [18℄ �nds the optimalpartition of the task set in preemption groups. Thisratio dereases as the load inreases and as the rangeof the stak size requirements is widened.Multiproessor experiments. In the �rst set of ex-periments, we onsider 4 CPU, 40 resoures, and 40tasks. Tasks' periods are randomly hosen between 1and 1000. The total system load U ranges from 2.76to 3.96, with a step of 0.2. The stak frame size ofeah task is a random variable hosen between 10 and100 bytes. Eah task has 0 to 4 ritial setions thatlok randomly seleted resoures; the sum of the worstase exeution times of the ritial setion aessed byeah single task is in the range of 0-20%, 5-25%, 10-30%,15-35%, 20-40% of the task worst ase exeutiontime (depending on the simulation, see Figure 7).In Figure 8 we plot the stak gain ratio betweenthe overall stak requirement before optimization andthe stak memory requirement of the solution found byour SA algorithm. In all experimental runs the solutionfound by our SA routine saves a onsiderable amountof RAM even when ompared to the �rst shedulable(and optimized for RAM onsumption) solution found.The average improvement in 58 runs is 34.6% (min18%, max 49%).Running times an be a onern when using a simu-lated annealing solution. Our algorithm an be run ina few hours on modern omputers The exeution of thesimulated annealing routine takes 6 to 30 hours on anIntel Pentium III 700Mhz to omplete the ooling. Forexample, a typial exeution (Total U = 2.76, ritialsetion ratio 0.10 to 0.30) visited 15,900,000 assign-ments (one every 4 ms) and found 6,855,560 shedula-ble solutions. These results are quite aeptable on-sidered that task alloation is a typial design timeativity.10. Conlusions and future worksIn this paper, we present a solution for shedulingreal-time tasks in single and multiple proessor sys-tems with minimal RAM requirements. In uniproes-
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Figure 8. Ratio of improvement given by our
multiprocessor optimization algorithm.sor systems, our solution seamlessly integrates Earli-est Deadline sheduling tehniques, the Stak ResourePoliy for aessing shared resoures, plus an innova-tive algorithm for the assignment of preemption thresh-olds and the grouping of tasks in non-preemptive sets.Our methodology allows to evaluate the shedulabilityof task sets and to �nd the shedulable solution (thetask groups) that minimize the RAM requirements forstak. We also provide an extension of the SRP poliyto multiproessor systems and global shared resoures(MSRP) and a task alloation algorithm based on sim-ulated annealing. The main ontribution of our workonsists in realizing that real-time shedulability andthe minimization of the required RAM spae are tightlyoupled problems and an be eÆiently solved only bydevising innovative solutions. The objetive of RAMminimization guides the seletion of all sheduling pa-rameters and is a fator in all our algorithms. We planto implement the algorithms desribed in this paper ina new version of our ERIKA kernel5 for the JANUSarhiteture [9℄.Referenes[1℄ T.P. Baker. Stak-based sheduling of real-time pro-esses. Journal of Real-Time Systems, 3, 1991.[2℄ S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemp-tively sheduling hard-real-time sporadi tasks on oneproessor. In Proeedings of the 11th IEEE Real-TimeSystems Symposium, pages 182{190, Deember 1990.[3℄ S.K. Baruah, L.E. Rosier, and R.R. Howell. Al-gorithms and omplexity onerning the preemptivesheduling of periodi real-time tasks on one proes-sor. The Journal of Real-Time Systems, 2, 1990.[4℄ A. Burhard, J. Liebeherr, Y. Oh, and S.H. Son. Newstrategies for assigning real-time tasks to multiproes-sor systems. IEEE Transations on Computers, 1995.[5℄ T. S. Craig. Queuing spin lok algorithms to supporttiming preditability. In Proeedings of the IEEE Real-Time Systems Symposium, De. 1993.5http://erika.sssup.it/
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