
A Service-Oriented Architecture for QoS Configuration and Management of

Wireless Sensor Networks∗

Gaetano F. Anastasi, Enrico Bini, Antonio Romano, Giuseppe Lipari

Scuola Superiore Sant’Anna

Pisa, Italy

{g.anastasi, e.bini, a.romano, g.lipari}@sssup.it

Abstract

Software infrastructures for networked enterprises may

need data coming from low-level pervasive devices, such

as Wireless Sensor Networks (WSNs). However, the com-

plex management of such tiny physical devices is not ac-

ceptable for high-level enterprise applications. Hence the

need for a middleware layer that hides complexity and

supports the management of heterogeneous real-time data

coming from the environment. In our opinion, the Service

Oriented Architecture (SOA) design paradigm is the most

suitable for allowing a seamless and effective integration

of pervasive technologies into enterprise information sys-

tems. In this paper we present a service-oriented, flexi-

ble and adaptable middleware that allows applications to

configure WSN functionalities and exploit them in the form

of Web Services.

1. Introduction

Networked enterprises are heavily based on systems

that leverage communication and information technolo-

gies to support business processes and strategic decisions.

This kind of support originates from data that, not only

constitute the building block of the analysis of processes

but are also fundamental in driving the execution of enter-

prise tasks. Data must be collected, filtered, merged, and

finally made available to decision-makers (or to trusted

users) through the enterprise information system.

Among the various sources of data, the physical envi-

ronment can be considered as one of the most common.

In fact, the production processes strictly interact with the

environment, and these interactions can have a significant

impact on the quality of the final product, both directly,

in case of outdoor production (e.g. agriculture, environ-

mental protection, vehicular traffic monitoring), and indi-

rectly, by affecting the correct functioning of the factory

plant (e.g. in factory automation, monitoring and control).

∗This work has been supported by the ART DECO research

project, funded by the Italian Minister of University, project code

n. RBNE05C3AH.

Nowadays, many low-cost technologies exist that per-

mit the collection of data from the physical world, such

as Wireless Sensor Network (WSN) or Radio Frequency

IDentification (RFID). Considering a recent trend (for ex-

ample work by Zhang and Wang [15]) that goes towards

the integration of RFIDs into WSNs just treating them

as peculiar kind of sensors, for the sake of simplicity in

this paper we will focus on WSN as the reference tech-

nology for the data-gathering level. WSNs are character-

ized by some distinctive features (like the small size and

the scarcity of energy and computational resources) that

make them strictly bound to hardware components and/or

embedded operating systems. Thus it is difficult to inte-

grate them into enterprise information systems.

One of the main problems is that performance control

and management of the quality of service (QoS) of the

results are obtained by manual ad-hoc programming and

configuration. For example, most WSN devices are pow-

ered by batteries, and it is therefore important both to min-

imize their energy consumption, and to monitor and esti-

mate their lifetime. The power consumption depends on

the rate at which the data is sampled and sent via radio.

Therefore, the final user may want to control and trade off

sampling frequency against device lifetime. In addition,

for some application it may be important to change the

monitored data and area during the system lifetime. How-

ever, every time one of the parameters of the monitoring

application has to be changed, it is necessary to access the

device with its own interface and reprogram it. To sim-

plify integration with higher level software layers, an ab-

stract interface of the WSN is needed, in order to hide the

low-level details while maintaining full control over the

management of WSN applications.

In our opinion, a general solution to this challenging

task passes through the adoption of the Service Oriented

Architecture (SOA) design methodology for abstracting

the data-gathering level, as it permits to build flexible

and interoperable systems in which pervasive technolo-

gies can be integrated in a seamless way for assuring both

intra-organizational and inter-organizational cooperation

and collaboration.

In this paper we propose a service-oriented, flexible

and adaptable middleware that allows high-level applica-

tions to easily configure the data-gathering level and ex-

ploit provided functionalities in an effortless manner. In

the remainder of the paper, related work is briefly ana-

lyzed in Section 2, whilst Section 3 describes the archi-

tecture of the proposed middleware for WSN. Section 4

details a case study that has been built to show the effec-

tiveness of the proposed solution, and finally Section 5

draws conclusions.

2. Related Work

The main goal of the proposed middleware is the ef-

fective and seamless integration of pervasive technolo-

gies into the information system of networked enter-

prises. This issue has already been tackled in the litera-

ture, for example by Samaras et al. [11] and by Delicato

et al. [2]). However, those two proposals are aimed at

implementing a service-oriented middleware directly on

sensor nodes, by forcing SOA-compatible protocol stacks

(like DPWS [9]) in resource constrained devices.

In our opinion, this approach has the major drawback

of imposing too much complexity in devices that are not

enough powerful to transmit and elaborate XML mes-

sages. To overcome such constraints, authors propose

to adopt a-priori knowledge in XML message definition,

thus losing middleware flexibility. Moreover, the usage

of web services in resource constrained devices imposes

a certain energy and latency overhead (as an example,

cost for such implementations has been quantified in the

work by Priyantha et al. [10]) that could be unacceptable

in some cases.

By contrast, our approach concentrates the logic that

abstracts the WSN on a powerful gateway, to which the

sink node is connected. Such solution is not new, for ex-

ample it has been used by Gil-Martinez-Abarca et al. [3]

for enabling management of remote bootstrap of network

nodes through the Internet; and by Kansal et al. [4] for

building a peer-to-peer infrastructure for sharing sensors

through the Internet. However, such works address a wide

area of pertinence and they do not explicitly address typi-

cal WSN issues, like the energy management of nodes and

the QoS support for applications.

A gateway-based solution has been also proposed by

Moeller and Sleman [8], aiming at integrating WSNs into

other existing IP-based networks. However, as their work

is addressed to the ambient intelligence at home, they only

abstract functionalities of single sensors, i.e. applications

are aware of the network deployment and request services

directly to a node; our approach instead abstracts func-

tionalities of the whole network, i.e. applications request

services for a geographic area without the need to know

how many nodes are deployed there or how they commu-

nicate each other.

Moreover, a common criticism of previous mentioned

works is that they do not allow applications to recon-

figure WSNs according to their needs and are not flex-

ible with respect to existing network protocols. In sup-

porting these features, our approach has some similarities

with MiLAN [5], a middleware that allows applications

to specify their QoS requirements and configure the net-

work to maximize the application lifetime while providing

the required QoS level. However, in MiLAN applications

specify their requirements by means of graphs that have to

be specialized for each particular sensing scenario. More-

over, data directly flow from each single node to appli-

cations, and thus a-posteriori treatments of data cannot

be exploited for transparently addressing different appli-

cation requirements related to same nodes. For these rea-

sons, this approach is less suitable for ensuring integration

and interoperability.

We instead allow applications to specify their require-

ments in a standardized way, by means of Service Level

Agreements (SLAs) that each application can indepen-

dently negotiate at run-time, in such a way that an applica-

tion does not need to know the QoS requirements of other

applications. In addition, our architecture allows applica-

tions to exploit gathered data by means of Web Services

technologies, both for ensuring flexibility in data delivery

and guaranteeing integration and interoperability.

It is worth to note that our approach completely dif-

fers from that of querying systems like TinyDB [6]. In

fact, such systems permits to extract data from a WSN

but they do not generally provide high-level interfaces for

QoS configuration and management. Moreover, such sys-

tems usually exploit low-level techniques for gathering

data and can thus be considered as tight extensions of a

particular WSN technology. For this reason, they could in

turn be used for developing a WSN whose configuration

and management are provided by our architecture, that is,

as explained in the next section, independent by design of

the underlying WSN technology.

3. The Middleware

This section describes SensorsMW, a service-oriented,

flexible and adaptable middleware for WSNs, which has

been designed and developed in the context of the ART-

DECO research project (http://artdeco.elet.

polimi.it/). SensorsMW is service-oriented in ab-

stracting WSNs as a collection of services, permitting a

fruitfully exploitation of pervasive technologies in enter-

prise contexts; it is flexible as it can be used in many con-

texts or domains, even when specific network issues have

to be addressed; it is adaptable in permitting the reuse

of well-known low-level techniques and supporting legacy

deployments that can be already in-place.

The proposed middleware has been designed keeping

in mind the main issues of this domain [14, 7], as high-

lighted by its key features, that can be summarized as fol-

lows:

• it supports QoS specification and management by

using a contract negotiation scheme based on Service

Level Agreements (SLAs). As an example, it per-

mits an easy access to network-provided data with

different time and space granularity; it supports time

and space recognition of network events; it provides

both periodic data sampling and event-driven notifi-

cations.

• it allows applications to reconfigure and maintain

the network during its lifetime. As an example, the

middleware supports fault detection management by

signaling when the number of active devices in a cer-

tain area goes below a certain threshold specified in a

special contract. Other contracts permits the energy

monitoring, by treating it as a special case of generic

data monitoring. Moreover, it is possible to imple-

ment energy-aware data collection and data fusion in

the network itself to spare energy depending on the

user requirements.

• it is independent of the underlying WSN technol-

ogy. In fact it does not depend on the network size

and topology and porting from one technology to a

different one implies the porting of just two subcom-

ponents (see the WSNGateway component). It is

possible to transparently perform services within the

network (e.g. data fusion and filtering) or in the gate-

way, depending on the services available in the low

level WSN technology.

In this section, the proposed architecture is overviewed

by describing its components in details. Moreover, the

specifications of contracts that regulate provided services

are presented, in order to illustrate the different capabili-

ties of SensorsMW.

3.1. Architecture

SensorsMW abstracts a WSN and encapsulates net-

work protocols by providing applications with a high-level

interface. In order to provide the possibility to config-

ure a WSN according to the QoS requirements of client

applications, SensorsMW leverages WS-Agreement [1], a

framework that allows service providers to easily create,

manage and monitor Service Level Agreements (SLAs)

that service providers and service consumers establish for

defining characteristics of service provisioning.

The interaction scheme is depicted in Figure 1: Sen-

sorsMW acts as a service provider, as it provides services

to client applications, that have to negotiate SLAs (also

called agreements or contracts in this paper) before con-

suming services. Services are provided through a Web

Services [12] interface, because it permits an effective in-

tegration and interoperability in enterprise systems by us-

ing XML as standard format of data exchange.

In Figure 2 we show the four main components of Sen-

sorsMW, which are now described in details.

ContractsCreator component

This component is responsible for interacting with client

applications in all the operations that regard the creation

and management of contracts. It comprises the following

subcomponents.

(Web Services)
Service provisioning

(WS−Agreement)
Service negotiation

Application SensorsMW

Figure 1. SensorsMW interactions with
client applications

WSN

Executor

Decision−maker

ServiceProvider DataRegistry

DataMeasurement

NetworkMaintenance

EventNotification

SensorsMWAgreement

ContractsRegistry

MeasuresRegistry

ContractCreator

Listener

WSNGateway

BrokerAgent

SensorsMWFactory

Figure 2. SensorsMW architecture

SensorsMWFactory. It interacts with the clients in the

agreement creation process and is responsible for publish-

ing the agreement templates related to services provided

by the system (see Section 3.2 for details about template

specifications). The templates are filled by clients accord-

ing to their requirements and then evaluated by the com-

ponent. In case the client proposal can be satisfied, Sen-

sorsMWFactory interacts with SensorsMWAgreement for

creating the agreement.

SensorsMWAgreement. It implements all the opera-

tions related to an agreement, including agreement estab-

lishment and deletion, and status information provision-

ing. The agreement can be established only after an agree-

ment creation process has been successfull completed by

the SensorsMWFactory component. There will be an in-

stance of SensorsMWAgreement for each contract that is

actually in-place.

BrokerAgent. It is responsible for forwarding requests

of SensorsMWFactory and SensorsMWAgreement to the

lower levels of the architecture. In particular, it forwards:

(a) admission requests coming from the SensorsMWFac-

tory when a new contract has to be admitted; (b) deletion

requests coming from the SensorsMWAgreement when

a contract has to be deleted. The introduction of this

subcomponent improves the responsiveness of the Sen-

sorsMWFactory and SensorsMWAgreement subcompo-

nents, that have to interact with clients, and also decouples

the ContractsCreator from the WSNGateway, that could

be deployed in two different physical hosts.

ServiceProvider component

This component is responsible for providing services to

client applications, in accordance with established con-

tracts. In SensorsMW, three main services have been indi-

viduated as essentials: they exploit the database provided

by the DataRegistry component for providing their func-

tionalities, as described in the following.

DataMeasurement. This service allows client applica-

tions to obtain currently gathered data, by just present-

ing the identifier of the established contract. As discussed

in Section 3.2, the contract contains all the configuration

parameters used by the WSN for gathering measurement

data related to a certain physical quantity.

EventNotification. This service allows client applica-

tions to receive notifications about events of interest, re-

lated to the measurement of a certain physical quantity.

Applications can configure events they are interested in,

and subscribe to them by means of specific contracts, that

will be described in Section 3.2.

NetworkMaintenance. This service allows client appli-

cations to perform network maintenance by measuring

and monitoring quantities that are necessary for a proper

WSN functioning, like the battery level or the number of

active sensors in a certain region. Applications can exploit

this SensorsMW features by establishing proper contracts,

that will be described in Section 3.2.

DataRegistry component

This component is responsible for managing all those data

that have to be persistently stored for the proper function-

ing of SensorsMW. It comprises the following subcompo-

nents.

ContractsRegistry. This subcomponent maintains the

registry of all contracts currently established with client

applications. Each contract is represented by an unique

identifier plus the featuring parameters, that depend on

the type of contract (see Section 3.2 for a detailed descrip-

tion of such parameters). The knowledge contained in this

registry can be used for admitting new contracts and for

providing applications with information regarding estab-

lished contracts.

MeasuresRegistry. This subcomponents maintains the

registry of measures gathered by the WSN, in accordance

with the presently established contracts. A measure is rep-

resented in the registry by the following parameters:

• the identifier of the measured physical quantity,

• the measure value,

• the datum aggregation type,

• the location in which the datum has been gathered,

• the time and date at which the datum has been gath-

ered.

In order to provide applications with requested data,

the knowledge contained in the MeasuresRegistry is lever-

aged by the ServiceProvider component, that contains the

logic for binding data with contracts and for correlating

data in order to respect established contracts: as an exam-

ple, the ServiceProvider component may aggregate data

a-posteriori if such in-network processing feature is not

available in the WSN.

WSNGateway component

This component is responsible for acting as a gateway

with respect to the WSN, in the sense that all the com-

munications to and from the WSN pass through this com-

ponent. It comprises the following subcomponents.

Decision-maker. This subcomponent makes the scene

when a new contract has to be admitted and it decides if a

service requested by a client with a certain parameter con-

figuration can be provided by the system. This includes

both an analysis of existing contracts and of the current

status of the WSN. When the component takes decision

about a high-level request, it communicates the response

to the BrokerAgent, that in turn forwards it to the Sen-

sorsMWFactory. If the response is negative, the Decision-

maker does not take any further action; if positive, it trig-

gers the creation of a new contract in the DataRegistry

and interacts with the Executor for triggering tasks for the

WSN, in order to fulfill new requirements of applications.

Executor. This subcomponent receives commands from

the Decision-maker and translates them into a language

understandable by the sensor nodes. This level of indi-

rection permits the independence of the admission control

logic contained in the Decision-maker from the low-level

technology used for the WSN programming, from whom

the Executor is strictly dependent. However, it is worth

to note that, to port SensorsMW to another WSN technol-

ogy, the Executor and the Listener, described later, are the

only subcomponents that need to be customized.

Listener. This subcomponent receives data gathered

from sensor nodes and stores them in the DataRegistry. It

can be subdivided in two main modules (not highlighted

in Figure 2): one is responsible for listening data com-

munications from sensors and it is strictly dependent of

the low-level WSN technology, the other one is respon-

sible for binding data coming from nodes with respective

locations, formatting measures as specified by the Mea-

suresRegistry and triggering storage.

3.2. Contract specification

The SensorsMW layer allows applications to config-

ure the WSN according to their needs before service pro-

visioning. In particular, for each kind of service, Sen-

sorsMW provides an agreement template that has to be

fulfilled by applications in order to create agreement pro-

posals. If an agreement proposal is accepted, a contract

is established with the client application, and both parties

are obliged to honour it.

The agreement templates provided by the SensorsMW

layer have been designed by keeping in mind the follow-

ing principles: (a) being well-structured and easily usable

by clients; (b) being compatible with limited hardware re-

sources of sensor nodes (e.g. battery power).

For these reasons, templates are specified by using the

WS-Agreement [1] framework and are characterized by a

certain time span of validity ∆t, that is based on an esti-

mation of the remaining lifetime of nodes as a function of

the current battery level and the requested sampling time.

By assuming an exponential discharge of the battery, the

voltage over time obeys to the law

V (t) = c(s)eα(s)t (1)

with c(s) and α(s) being coefficients depending on the

sampling period s, whose values will be estimated in Sec-

tion 4.1. Notice that α(s) < 0 since the battery discharges

over time. From Eq. (1), the validity interval of the con-

tract can be computed as:

∆t =
1

α(s)
log

Vmin

V0
(2)

where V0 is the current measure of the voltage and Vmin is

the minimum operative threshold for the node.

In SensorsMW, three different types of services have

been individuated (see Section 3.1), whose execution pa-

rameters can be negotiated by means of templates. For this

reason, three different kind of contracts have been speci-

fied, that can be summarized as follows:

1. periodic measurement contract, to periodically mea-

sure a certain physical quantity;

2. event monitoring contract, to monitor specific events

related to quantity measurement;

3. network management contract, to control and main-

tain particular situations related to WSN functioning.

Each kind of contract is characterized by key parame-

ters, that will be described in the following.

Periodic measurement contract

This contract allows applications to periodically measure

a certain physical quantity by specifying some parameters

that characterize the WSN functioning during service pro-

visioning. It is characterized by the following parameters:

• the physical quantity to be measured

• the time span for the measurement

• the sampling time of measure

• the data aggregation mode

• the region of interest

• the QoS level

The SensorsMW layer allows applications to negoti-

ate such parameters by formally describing them through

XML Schema [13] elements, that are inserted in a

ServiceDescriptionTerms section of an Agree-

ment Template. A single SDT can refer to only one physi-

cal quantity, as the various quantities measured by a WSN

can have very different features from one each other. A

possible SDT for an agreement template related to a peri-

odic measurement service can be the following.

<wsag:ServiceDescriptionTerm

wsag:Name="temperature_measurement"

wsag:ServiceName="data_measurement">

<smw:DataMeasurement>

<smw:Measure>Temperature</smw:Measure>

<smw:AggregationPeriod>

PT1H10M

</smw:AggregationPeriod>

<smw:SamplingTime>PT10S</smw:SamplingTime>

<smw:Aggregation>avg</smw:Aggregation>

<smw:Region>

<smw:Location>NorthArea</smw:Location>

<smw:Location>SouthArea</smw:Location>

</smw:Region>

<smw:QoSLevel>100</smw:QoSLevel>

</smw:DataMeasurement>

</wsag:ServiceDescriptionTerm>

Values are specified by using proper XML data types

that are described as follows.

Measure. It expresses the physical quantity to be mea-

sured as enumerate.

AggregationPeriod. It expresses the time span for data

measurement by using the duration XML data type.The

example specifies a time span of 1h and 10min.

SamplingTime. It expresses the sampling time of sensing

by using the duration XML data type. In the example,

data are sampled by sensors each 10 seconds.

Aggregation. It expresses the aggregation mode of data

collected in the same location, by using an enumerate data

type (possible values could be avg, max, min).

Region. The list of locations we are interested to monitor.

Location. It expresses the location of interest by using an

unique identifier.

QoSLevel. It expresses the QoS level to be provided, by

using values belonging to the set {x ∈ N : 0 ≤ x ≤ 100}.

A QoS level equal to 100 is equivalent to the maximum

quality of service.

Depending on the particular service configuration,

some parameters could not be negotiated during the agree-

ment phase. Other parameters are instead negotiable and

their default values can be modified by applications when

presenting an agreement proposal. In particular, in or-

der to be adherent to WS-Agreement specification, the

CreationConstraints template section must con-

tain an Item element for each SDT parameter that can

be modified. By using the Item element, possible values

for changeable parameters can also be specified, follow-

ing the restriction model suggested by XML Schema. As

an example, the Aggregation item can be limited to

assume only the min, max and avg values.

The same mechanism can be leveraged to present the

list of location to users, in such a way that different iden-

tifiers can be used from time to time to best depict the

monitored area. The binding between sensor nodes and

locations can be always modified by means of configura-

tion files that associate a NodeID with a LocationID.

Event monitoring contract

The event monitoring contract allows applications to show

interest in certain events and, in particular, to monitor spe-

cific events related to quantity measurement.

An event monitoring contract has same similarities

with the periodic measurement contract, as highlighted by

its key parameters, listed in the following:

• the physical quantity of interest

• the event triggering condition

• the event notification maximum delay

• the data aggregation mode

• the region of interest

• the QoS level

For specifying such parameters, this type of contract

uses some of the XML data types already defined for

the periodic measurement contract: they are Measure,

Aggregation, Region and QoSLevel. In addition,

two XML data types are defined for specifying triggering

conditions and notification delays.

MeasurementInterval. It expresses, through the

LowerBound and UpperBound elements, the closed

interval of the real line, whose values are interpreted ac-

cording to the International System of Units (for temper-

ature we consider Celsius temperature). As an example,

the attainment of 20°C can be set as an event triggering

condition by just specifying 20.0 in the LowerBound

element and INF in the UpperBound element.

NotificationDelay. It expresses the granted delay from an

event occurrence to its signaling, by using the duration

XML data type.

Network maintenance contract

The proper functioning of a WSN can be influenced by

many events, like sensor node failures, battery discharges,

node displacements or additions. For these reasons, this

kind of contract allows applications to configure services

for controlling and maintaining a WSN, in order to pre-

vent dangerous events or take proper actions in case they

happen.

SensorsMW gives the possibility to negotiate both

measurement services and event-based services on criti-

cal quantities for the WSN maintenance, like energy con-

sumption and the number of sensors in a certain region. In

particular, the following key parameters has been individ-

uated for measurement services: the quantity of interest,

the time span for which the measurement has to be done,

the region of interest. Instead, the parameters for event-

based services are: the quantity of interest, the event trig-

gering condition, the event notification delay, the region

of interest.

The negotiation of network maintenance services is

very similar to that described for periodic measurement

services and event monitoring ones, as the number of

sensors or the battery level can be treated as quantities

to be measured in the network. As an example, it is

possible to establish a contract for monitoring the num-

ber of active sensors on a region and triggering an event

when it is behind a certain threshold by simply specifying

SensorNumber in the field Measure.

4. Case study

In this section a case study is presented to show the ef-

fectiveness of the proposed architecture and demonstrate

its adaptability and flexibility for building WSN middle-

wares that are QoS-aware and power-aware.

As a candidate application, we consider the tempera-

ture monitoring in a certain region of a wineyard and we

study the behavior of a concrete implementation of Sen-

sorsMW, tailored to TinyOS 2.x and featured by a simple

QoS admission control module. Moreover, a WSN testbed

has been designed and deployed to be used in this case

study. In the following, we first present such testbed, and

then we detail our case study.

4.1. WSN testbed

For the sake of simplicity, the WSN testbed is charac-

terized by a network star topology, in which a node acts as

a coordinator and the other ones act as end-devices. The

nodes are deployed all around the monitored area and have

different tasks according to their category:

• The Coordinator node, connected to a resource-

unconstrained machine, is responsible for interfacing

the WSN with the higher level architecture through

the WSNGateway. The coordinator receives data

coming from the end-devices and forwards them to

the WSNGateway. Also, it receives commands from

the WSNGateway and forwards them to proper end-

devices. In the current implementation, commands

concern activation and deactivation of sensors on a

node, and setting/changing of the sampling periods.

• The End-Device node is responsible for gathering

data from active sensors and sending them to the co-

ordinator node.

Figure 3. Voltage as a function of time

Every end-device node is a Crossbow MicaZ, featur-

ing the ATMEL ATmega128 8-bit microcontroller; the

Chipcon SmartRF CC2420 2.4 GHz IEEE 802.15.4

compliant RF transceiver; and the Crossbow Sensor
Board MDA100CB, a sensor board that provides a preci-

sion thermistor, a light sensor/photocell and general pro-

totyping area.

On every node, the TinyOS 2.0 embedded operating

system runs along with the application program written in

the NesC language. In particular, the Coordinator node

runs the BaseStation TinyOS application to manage data

packets coming from the network and send command

packets to the network. Every end-device runs an appli-

cation program composed by several TinyOS interfaces

linked together to provide the following features:

1. dynamic adjustment of sensor sampling rates;

2. power saving through the asynchronous low power

listening (LPL) strategy;

3. dynamic sensor activation/deactivation.

The first two features have been exploited for measur-

ing the decrease of the battery level as a function of time.

According to the LPL strategy the radio is switched off for

a sleep interval to save energy. Then the radio is turned on

to listen for possible incoming packets. If no packet is re-

ceived the radio is switched off again. In our testbed we

set a sleep interval of 500ms.

In Figure 3 the top plot (labelled base) reports the volt-

age over time when no measurement is required to the

node. The other plots, from top to bottom, report the volt-

age for increasing value of sampling rates (10s, 1s, 0.1s).

All the experiments have been conducted for a duration of

250,000 seconds (almost three days).

For the purpose of this experiment, each node sends a

packet for every sample and, as expected, the battery dis-

charges faster with higher sampling rate. Starting from

these results, in accordance to Eq. 1 we have derived a

linear relationship of the sampling period s and the coef-

ficients c and α as follows:

c(s) = 1.9288 + 0.0121 s

α(s) = −0.3505 + 0.0013 · 10−6
s

Deny Accept

Check requested
sampling time

other cId
with greater

sampling

yes

no

QoS
required

yes

no

restrictive flexible

policy
internal

Figure 4. Access control module

4.2. Middleware testbed

For this case study, the proposed middleware archi-

tecture has been implemented for abstracting a TinyOS-

based WSN, such as the one described in the previous sub-

section. For tailoring SensorsMW onto TinyOS, only the

Listener and the Executor subcomponent (see Section 3)

has been modified, by properly adapting the Listen and

Send TinyOS applications.

Moreover, a simple access control module has been

designed to be plugged into the SensorsMW architecture

through the Decision-maker subcomponent. Such access

control module behaves as follows (Figure 4 shows its

flowchart).

When applications require QoS-enabled services, Sen-

sorsMW sets the sampling time of nodes in a certain lo-

cation to the minimum value necessary to gather data at

the exact instants of time, whilst in case of QoS-disabled

services, provided data are interpolated basing on exist-

ing measures gathered at instants different than required.

Two different policies (flexible and restrictive) are intro-

duced, to differentiate the system behavior in accordance

to the status of internal variables. In our implementation

we use the battery level of nodes as the reference inter-

nal variable, since the battery level decreases faster when

setting a shorter sampling time. Following this reasoning,

the restrictive policy accepts a new contract only if the re-

quired sampling time is larger than the one actually set for

selected locations, to prevent the new contract affects ex-

isting ones. The flexible policy instead accepts a new con-

tract even when the required sampling period is smaller

than actual ones and the sampling time in the related lo-

cations is set to the greatest common divisor of admitted

sampling times.

As a possible scenario, assume that no contract has

been stipulated and three client applications require a

QoS-enabled DataMeasurement service related to the

temperature monitoring, when the policy is flexible. Ap-

plications configure the service by creating, in different

instants of time, contracts that differ for the parameters

described in Table 4.2. As the applications require QoS-

enabled services and the policy is set to flexible, the access

Application Agreement Sampling (s) Location

1 agr1 30 loc1, loc3

2 agr2 20 loc2

3 agr3 10 loc1

Table 1. Application requested parameters

 25

 25.1

 25.2

 25.3

 25.4

 25.5

 0 50 100 150 200 250 300

te
m

p
e

ra
tu

re
 (

C
)

time (s)

agr1-loc1
agr3-loc1

Figure 5. Varying of temperature

control module admits all the three applications. In par-

ticular, when application 3 requires a sampling of 10s for

location loc1, the sampling time of nodes in that location

is set to 10s, in a manner that both application 1 and 3 can

obtain data gathered at the required time instants. If at this

time the system changes its internal policy to restrictive,

the sampling time for nodes of location loc1 will never

be set to a lower value than 10s.

The ServiceProvider component is responsible for pro-

viding data following the requirements of applications, as

can be seen by the plot of figure 5, in which the tempera-

ture obtain by application 1 and 3 for location loc1 is

plotted as a function of time. This scenario highlights

as SensorsMW can transparent support different require-

ments of applications, even when consuming services re-

lated to the same WSN areas.

5. Conclusion

In this paper, we presented a service-oriented, flexi-

ble and adaptable middleware for QoS configuration and

management of Wireless Sensor Networks. A case study

has been also built and presented to show the effectiveness

of the proposed solution.

In particular, our architecture supports QoS specifi-

cation and management by using a contract negotiation

scheme based on Service Level Agreements; it allows ap-

plications to reconfigure and maintain the network during

its lifetime and it is independent of the underlying WSN

technology. Moreover, it is characterized by an accurate

design that permits to both abstract WSNs for a seam-

less integration into enterprise information systems and

address specific low-level features that must be taken into

consideration for guaranteeing certain QoS levels.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Kea-

hey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,

S. Tuecke, and M. Xu. Web Service Agree-

ment Specification (WS-Agreement), March 2007.

http://www.ogf.org/documents/GFD.107.pdf.
[2] F. Delicato, P. Pires, L. Pinnez, L. Fernando, and

L. da Costa. A flexible web service based architecture for

wireless sensor networks. In Distributed Computing Sys-

tems Workshops, 2003. Proceedings. 23rd International

Conference on, pages 730–735, May 2003.
[3] J. Gil-Martinez-Abarca, F. Macia-Perez, D. Marcos-

Jorquera, and V. Gilart-Iglesias. Wake on lan over internet

as web service. In Emerging Technologies and Factory

Automation, 2006. ETFA ’06. IEEE Conference on, pages

1261 –1268, sept. 2006.
[4] W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao.

Senseweb: An infrastructure for shared sensing. Multi-

media, IEEE, 14(4):8 –13, oct.-dec. 2007.
[5] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo.

Middleware to support sensor network applications. Net-

work, IEEE, 18(1):6–14, Jan/Feb 2004.
[6] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and

W. Hong. Tinydb: an acquisitional query processing sys-

tem for sensor networks. ACM Trans. Database Syst.,

30(1):122–173, 2005.
[7] W. Masri and Z. Mammeri. Middleware for wireless sen-

sor networks: A comparative analysis. In Network and

Parallel Computing Workshops, 2007. NPC Workshops.

IFIP International Conference on, pages 349–356, 2007.
[8] R. Moeller and A. Sleman. Wireless networking services

for implementation of ambient intelligence at home. In

Devices, Circuits and Systems, 2008. ICCDCS 2008. 7th

International Caribbean Conference on, pages 1 –5, 2008.
[9] a. OASIS Standard. Devices profile for web services

(dpws) version 1.1, July 2009.
[10] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao.

Tiny web services: design and implementation of interop-

erable and evolvable sensor networks. In SenSys ’08: Pro-

ceedings of the 6th ACM conference on Embedded network

sensor systems, pages 253–266, New York, NY, USA,

2008. ACM.
[11] I. K. Samaras, J. V. Gialelis, and G. D. Hassapis. Integrat-

ing wireless sensor networks into enterprise information

systems by using web services. In SENSORCOMM ’09:

Proceedings of the 2009 Third International Conference

on Sensor Technologies and Applications, pages 580–587,

Washington, DC, USA, 2009. IEEE Computer Society.
[12] W. Vogels. Web services are not distributed objects. IEEE

Internet Computing, 7(6):59–66, 2003.
[13] P. Walmsley and D. C. Fallside. XML schema part 0:

Primer second edition. W3C recommendation, W3C,

Oct. 2004. http://www.w3.org/TR/2004/REC-xmlschema-

0-20041028/.
[14] Y. Yu, B. Krishnamachari, and V. Prasanna. Issues in de-

signing middleware for wireless sensor networks. Net-

work, IEEE, 18(1):15–21, Jan/Feb 2004.
[15] L. Zhang and Z. Wang. Integration of rfid into wire-

less sensor networks: Architectures, opportunities and

challenging problems. Grid and Cooperative Comput-

ing Workshops, International Conference on, 0:463–469,

2006.

