
On the Energy-Aware Partitioning of Real-Time

Tasks on Homogeneous Multi-Processor Systems

Mario Bambagini1, Juri Lelli1, Giorgio Buttazzo1 and Giuseppe Lipari1,2

1Scuola Superiore Sant’Anna, Pisa, Italy
2Ecole Normale Superieure de Cachan, France

Abstract—In high-performance computing systems, efficient
energy management is a key feature for keeping energy bills
low and avoiding thermal dissipation problems, as well as for
controlling the application performance. This paper considers
the problem of partitioning and scheduling a set of real-time
tasks on a realistic hardware platform consisting of a number
of homogeneous processors. Several well-known heuristics are
compared to identify the approach that better reduces the overall
energy consumption of the entire system. Despite the actual state
of art, the approach which minimizes the number of active cores
is the most energy efficient.

I. INTRODUCTION

Energy saving has become an important issue in modern

computing systems, spreading from embedded systems to high

performance servers. Concerning the first scenario, in most

cases, devices are battery operated, meaning that a lower

energy consumption can lead to a longer lifetime or higher

performance. Conversely, high-performance servers do not

have explicit constraints on the supplied power, but an effective

energy-aware policy may lead to cheaper energy bills and

less strict thermal dissipation problems. This paper deals with

energy saving in high-performance servers.

In CMOS technology, which is leading today’s hardware

circuits, the power consumption of a gate can be expressed as

a function of the supply voltage V and the clock frequency f
through the following Equation [1]:

Pgate = αCLV
2f + αV Ishort + V Ileak (1)

where CL is the total capacitance driven by the gate, α is

the gate activity factor (i.e., the probability of gate switching),

Ishort is the current flowing between the supply voltage and

ground during gates switching, and Ileak is the leakage current.

In particular, the three terms describe the dynamic, the short

circuit, and the static power component dissipated in a gate,

respectively.

Dynamic Voltage and Frequency Scaling (DVFS) techniques

consist of reducing the voltage V and the frequency f in Equa-

tion (1), in order to slow down the processor and reduce the dy-

namic power. As a consequence, task execution times become

longer. In this approach, the maximum usable frequency also

depends on the voltage V according to Equation (2), where VT

This work has been supported by the 7th Framework Programme JUNIPER
(FP7-ICT-2011.4.4) project, founded by the European Community under grant
agreement n. 318763.

is the Threshold Voltage, that is, the minimum voltage between

gain and source able to create a channel from drain to source

in a MOSFET transistor.

circuit delay =
V

(V − VT)2
. (2)

Given such a limitation, not all the pairs (V ,f) are usable.

Another well-known approach is the Dynamic Power Man-

agement (DPM), which consists in executing the workload at

the maximum performance level and switching the processor

off during idle intervals.

In actual operating systems, power management is im-

plemented through the Advanced Configuration and Power

Interface (ACPI) [2], whose specification defines a standard

for devices configuration and monitoring. In particular, ACPI

offers the operating system an easy and flexible interface to

discover and configure the compliant devices. For instance,

unused devices, including the entire system, can be switched to

a low-power state. Concerning the processors, such a standard

scales the CPU speed down according the system utilization,

while using the idle state when there is no pending workload.

Since response time is an important parameter to minimize

in data servers, real-time analysis can be exploited to formally

guarantee whether the workload can or cannot be executed on

the actual hardware without exceeding deadlines, preventing

a quality of service degradation or unrecoverable faults. An

additional benefit of using real-time scheduling techniques is

the possibility of allocating a predefined fraction of CPU time

to each task, so achieving a temporal isolation among them.

On multiprocessor systems, scheduling techniques can be

roughly divided into three macro groups: partitioned, global,

and hybrid. Partitioned techniques statically assigns each task

to a specific CPU forbidding a task to migrate onto another

processor even thought it is idle. This method allows designers

to easily check the system feasibility but, in many cases, it

leads to a waste of computational resources. Global approaches

improve the system utilization by allowing task migration at

any time in any processor, but are more difficult to analyze and

may introduce significant run-time overhead. Hybrid schedul-

ing approaches try to combine the two previous techniques to

reduce their drawbacks and exploit their advantages.

Paper contribution. This paper considers the problem of

partitioning and scheduling a set of real-time tasks on a realis-

tic hardware platform consisting of a number of homogeneous

processors. Several well-known heuristics are compared to

identify the approach that better reduces the overall energy

consumption of the entire system (including CPU, memory,

I/O peripherals and other devices). Although many algorithms

have been published on this topic, they are characterized

by a significant complexity, which makes them not suitable

for a real usage in high-performance systems. Conversely,

most heuristic algorithms require a polynomial complexity

in the worst case, resulting in very competitive performance

even for reconfigurable systems, where the overhead due to

reconfiguration has to be as small as possible.

A real platform (Dell PowerEdge R815 [3]), designed for

high-performance computation, is taken into account in this

work. An additional contribution of this paper with respect

to the current state of art is that we consider the power

consumption of the entire system, not only the dissipation due

to the processor. This is particularly relevant, as considering

only a single component may give misleading results that are

not valid in a general case.

In summary, this paper aims at comparing the actual state

of art from a pragmatical point of view, by considering a real

platform rather than proposing new algorithms.

Paper organization. The rest of the paper is organized as

follows: Section II introduces the system model taken into

account in the analysis; Section III explains how the heuristics

work; Section IV compares them on the system under analysis;

Section V concludes the paper stating some final remarks and

introducing a few open problems for a future work.

A. Related work

Energy saving issues in real-time embedded systems have

been studied for decades, since Yao et al. [4] proposed an

optimal off-line algorithm for single core systems.

Aydin and Yang [5] compared the behavior of four well-

known heuristics (First-Fit, Next-Fit, Best-Fit, Worst-Fit) for

homogeneous multicore systems and periodic independent

tasks. Their work stated that Worst-Fit Decreasing (WFD),

which aims at balancing the workload among the cores, is

the most effective for reducing the energy consumption while

considering cubic power functions.

Yang et al. [6] proposed an algorithm which partitions a set

of frame-based tasks (with same period and deadline) using

the Worst-First strategy and then scales speed in particular

instant according to the task features. Although the algorithm

is characterized by a good approximation factor with respect to

the optimal scheduling, the authors made several non-realistic

assumptions, such as continuous and infinitive frequency range

(s ∈ [0,∞]) and negligible consumption in idle state.

Kandhalu et al. [7] considered the issue of partitioning a

set of periodic real-time tasks on multicore systems charac-

terized from a single voltage island (all the processors share

the same voltage and frequency). First of all, they proved

the approximation upper bound for the classical Worst-First

heuristic and then, they provided their own algorithm which

overcomes several limitation of the state of art.

Huang et al. [8] faced the problem of partitioning a work-

load with precedence constraints on a multiprocessor system

while considering communication costs between processors.

Their solution relied on complete search and meta-heuristics.

Pagani and Chen [9] carried out an analysis that, indepen-

dently from the task partitioning algorithm, found the ratio

of the Single Frequency Approximation (SFA) scheme on

multicore voltage islands with respect to the optimal solution.

More precisely, SFA sets the frequency of the voltage island

equal to the maximum utilization among the cores.

Petrucci et al. [10] considered the problem of partitioning a

set of independent tasks on a heterogeneous systems. More

precisely, they introduced a periodic partitioning algorithm

(implemented as ILP problem) which migrates tasks among

cores according to their actual phase (interval in which the

code is mostly either CPU or I/O intensive).

II. SYSTEM MODEL

This section presents the power model of the considered

platform and introduces the workload characteristics.

A. Power model

We consider a multi-processor platform composed of m
homogeneous processors (φj , j = 1, . . . ,m) whose frequen-

cies can be set independently from each others. The frequency

range consists of k discrete elements {f1, f2, . . . , fk}, ordered
by ascending values. In the following, the normalized speed s,
defined as s = f/fk, is used as a more convenient parameter

(s = 1 denotes the maximum speed).

Scaling speed introduces an overhead proportional to the

absolute difference between the new and the previous one,

as the Phase-Locked Loop (PLL) which generates the clock

signal must be tuned.

As required by the ACPI standard, each processor provides

several low-power states characterized by different power

consumption and different time overhead for entering and

leaving such states. More generally, the system provides the

following operative states:

• S0: The system is fully operative (both processors and

memory);

• S1: Although caches are flushed and code execution is

suspended, processors and memory are active;

• S2: Processors are switched off and the dirty cache is

flushed to the memory. Other devices may be kept on;

• S3: Similar to S2 but more devices are put in sleep;

• S4 (hibernation): Data in memory is copied in to the hard

drive and all the system is powered down;

• S5: The system is completely off except for the logic that

allows the system to switch on. Putting the system in to

S0 requires a complete boot and no data is retained.

Each processor can be put independently in S1, S2 and S3.

Intuitively, the deeper the low-power state the longer the

required time to move in/out such a state. When the system

is almost completely off (S5), the sleeping and waking up

time is due to the shutting down and booting of the operating

system, respectively. Moreover, the hibernation state requires

writing/reading a large amount of data to/from the hard drive

to properly restore the main memory content. The overhead

related to S4 is around several seconds while S5 requires many

seconds. States S2 and S3 require an overhead in the order of

several milliseconds, while recovering from the first state (S1)

requires only to fill the cache (comparable to the preemption

overhead) [11], [12].

For the sake of simplicity, periods and computation times

are assumed to be much longer than state transition overheads,

which can then be discarded from the analysis.

The ACPI module is in charge of putting the processor in

a predefined low-power state (statically selected in the BIOS)

whenever there is no process running. Typically, the most used

state is S3, as it provides a good trade-off between power

consumption and time overhead for almost all the applications.

The energy consumption of the entire system in the interval

[t1, t2] can be expressed by the following equation:

E(t2, t1) = ECPU (t2, t1) + ENO CPU (t2, t1). (3)

where ECPU denotes the energy dissipated by the processors

and ENO CPU the energy dissipated by the remaining com-

ponents, including the main memory (DDR), disks, network

interfaces and other peripherals whose behaviors can be con-

sidered not directly affected by the running frequency of the

processors. Although running tasks impact on such devices, for

the sake of simplicity, we assume a constant average device

dissipation, that is:

ENO CPU (t2, t1) = (t2 − t1) · PNO CPU .

where PNO CPU is the power consumed by the devices.

Since each processor can have a different state/speed at any

time, the processor energy dissipation is the integral of power

consumption in the interval [t1, t2]:

ECPU (t2, t1) =

t2∫

t1

PCPU (t)dt.

Basically, the processor power consumption at time t is a

function of the actual state of each processor: the low-power

state in use if it is asleep, or the running speed if it is active.

In other words, such a function depends on m variables:

PCPU (t) = f(φ1(t), φ2(t), ..., φm(t)),

where φj(t) denotes the state of processor φj at time t.

To characterize the power model of the processors, two

possible methods are possible: extending the well-known

Martin’s equation [13] to consider m variables (one for each

CPU) or creating a table with the consumption for all the

possible configurations. In this paper we consider a variant of

the second option which, given the consumption obtained by

using the same speed for each processor, extrapolates an upper

bound for all the other configurations.

B. Task model

The workload Γ consists of n fully-preemptive periodic

tasks {τ1, τ2, . . . , τn}. Each task τi is characterized by a worst-
case execution time (WCET) Ci(s), which is a function of the

speed, a relative deadline Di and a period Ti.

The WCET of τi is computed as Ci(s) = Cfix
i + Cvar

i /s,
where Cfix

i and Cvar
i denote the components which does

not scale and scale with speed, respectively. More precisely,

Cvar
i models the code which executes CPU-intensive compu-

tation, while Cfix
i represents the code interacting with devices

whose frequencies do not depend on CPU frequency (e.g.

I/O operations and spin locks). Moreover, the parameter γ
(1 ≥ γ ≥ 0) is introduced to specify the overall fraction of

computation time that does not scale with the speed. Such a

value is computed as the average speed-independent fraction:

γ = 1

n

∑
τi

Cfix
i /Ci(sm).

All parameters are assumed to be in N
+. Each task τi

generates an infinite sequence of jobs (τi,k, k = 1, 2...), with
the first job arriving at time zero (ai,0 = 0) and subsequent

arrivals separated by Ti units of time (ai,k+1 = ai,k + Ti).

In addition, the utilization term Ui(s) = Ci(s)/Ti deter-

mines the processor bandwidth that task τi requires at speed
s. Assuming to schedule the periodic workload by the EDF

policy [14], the tasks assigned to the processor φj do not miss

any deadline if and only if

Uφj
=

∑
τi∈Γ|τi→φj

Ui(si) ≤ 1. (4)

The overall task set is feasible if Equation 4 is satisfied for

each processor.

Finally, we define the hyperperiod H as the time interval

after which the schedule repeats itself. In the case of periodic

tasks, such analysis horizon is computed as the least common

multiple of periods, H = lcm(T1, T2, ..., Tn).

III. HEURISTICS

This paper compares two heuristics: Worst-Fit Decreasing

(WFD) and Best-Fit Decreasing (BFD).

First of all, both heuristics sort the task set by descending

utilization: Γ̄ = {τi ∈ Γ|ui−1 ≥ ui ≥ ui+1}. Then, starting
from the first element in Γ̄, WFD assigns each task to the

processor with the highest unused utilization, while BFD

chooses the one whose spare utilization fits better.

Let us consider three processors and five tasks with the

following utilization values: u1 = 0.6, u2 = 0.5, u3 = 0.3,
u4 = 0.3 and u5 = 0.1. The WFD heuristic would start

assigning each of the first three tasks to one free processor, τ1
to φ1, τ2 to φ2, and τ3 to φ3. Then, the spare utilization on

each processors become 0.4, 0.5 and 0.7, respectively. Next,
the fourth task is assigned to φ3 which has the highest spare

capacity, reducing it down to 0.4. Finally, τ5, characterized by

the lowest utilization, is assigned to φ2. The final partitioning

is shown in Figure 1.

Conversely, the BFD heuristic assigns τ1 to φ1 and then

tries to allocate τ2 to φ1, but the residual utilization of φ1 is

not enough to accommodate τ2, which is then allocated to φ2.

Unlike the previous case, τ3 is allocated on φ1 and all the

remaining two tasks are assigned to the second core φ2. The

BFD result is reported in Figure 2.

In conclusion, WFD led to a task partitioning that left 0.4,
0.3 and 0.4 as spare capacity on the three cores, while BFD

utilized entirely the second core and partially the first (90%),

leaving the third processor off.

φ1 φ2 φ3

τ1 (1st) τ2 (2nd)
τ3 (3rd)

τ4 (4th)
τ5 (5th)

0%

100%

Fig. 1. Task partitioning obtained by the WFD heuristic.

φ1 φ2 φ3

τ1 (1st) τ2 (2nd)

τ3 (3rd)
τ4 (4th)

τ5 (5th)

0%

100%

Fig. 2. Task partitioning obtained by the BFD heuristic.

As this simple example has shown, BFD aims at reducing

the number of active cores, while WFD attempts to exploit all

processors to reduce the overall working performance.

Once tasks have been partitioned, the remaining utilization

on each core can be exploited to further reduce energy

consumption [15]–[19].

In this paper, we consider two extreme approaches:

• DVFS: when the system starts, for each core, the slowest

speed that guarantees the task set feasibility is set;

• DPM: the workload is executed at the maximum perfor-

mance and then ACPI exploits low-power states when

there are no pending tasks.

Since we deal with a discrete set of frequencies, if DVFS is

not able to exploit the whole residual utilization, DPM is used

in addition to take advantage of it.

IV. EXPERIMENTAL RESULTS

In this section, the power measurements related to the multi-

core platform is first reported to provide the consumption

profile. Then, the two heuristics introduced in Section III are

compared in terms of energy consumption.

A. Consumption profile

The considered platform, a Dell PowerEdge R815 rack

server, is equipped with 48 homogeneous cores supporting the

following frequency range {0.8, 1.0, 1.3, 1.5, 1.9}GHz which

leads to the speed set: {0.42, 0.53, 0.68, 0.79, 1.0}. Each core

can set its frequency independently of the others. Cores are

divided in 8 clusters, each containing 6 cores and one eighth

of the main memory (NUMA system). The platform runs the

GNU/Linux kernel 3.10.0-rc3 [20].

The power measurements reported in the paper have been

obtained by monitoring the absorbed power from the entire

platform, including memory, I/O peripherals, and buses.

In the considered scenario (48 cores, 5 frequencies each

and two low-power states), the configurations to be checked

are 748. Since the number is extremely high, we measured

the consumption for a set of key configurations and then

the others are obtained by interpolation. More precisely, for

each speed, we measured the consumption of setting all the

active cores to the speed under analysis while varying the

number of fully loaded cores (from 1 to 48). The workload

consists of an endless execution of the EEMBC Coremark

benchmark [21], which implements mathematical operations

(CPU-intensive code) and keeps the processor always busy

(no I/O phases). As a result, the execution time perfectly

scales with the frequency. Concerning the unused processors,

the two low-power states used by the ACPI driver have been

considered. The first one is called IDLE and it is automatically

inserted by the module when there are no pending tasks, while

the OFF state is manually set by the user.

The first consideration related to the measurements reported

in Figure 3 concerns the impact of the low-power state.

More precisely, the OFF feature was supposed to guarantee

the lowest consumption but it exploits S1 and introduces a

significant overhead for updating the kernel data structures.

On the other hand, the IDLE state exploits S3, guaranteeing

lower consumption and shorter overhead.

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 540

 1 2 3 4 5 6 7 8

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 [

W
a

tt
]

fully loaded clusters

 1.9GHz+Off

 1.5GHz+Off

 1.3GHz+Off

 1.0GHz+Off

 0.8GHz+Off

 1.9GHz+Idle

 1.5GHz+Idle

 1.3GHz+Idle

 1.0GHz+Idle

 0.8GHz+Idle

Fig. 3. Power consumption as a function of active clusters and low-power
states.

Given such measurements, the configurations in which all

the processors exploit the same frequency but only some of

the cores in the cluster are active (e.g., 3 processors out

of 6) are assumed to dissipate the interpolated value. We

empirically tested such an assumption for several configuration

and it turned out to be an acceptable approximation. When

the processors exploit different frequencies, we consider the

average consumption as the weighted average of the consump-

tion assuming all the active processors running at the same

frequency. Formally, it can be expressed as:

PCPU (t) =
∑
sj

wj f̄(sj),

where wj is the actual number of CPU at speed sj divided

by the total number of active cores and f̄(sj) represents the

consumption obtained by setting all the active cores at speed

sj . For example, if there are two clusters at frequency 1.0GHz
and one at 1.5GHz, the consumption would be:

PCPU (t) =
12

18
360 +

6

18
375 = 365W,

where 360 and 375 are the consumptions of having three

clusters at 1.0 and 1.5 GHz, respectively.

It is worth noting that when the system keeps active only

a single cluster, the power consumption can be varied from

335 to 365 (from 0.8GHz to 1.9GHz, respectively), meaning

that speed scaling techniques can affect less than the 10%.

Even when the spread between minimum and maximum

consumption is the widest (all the processors are awake), the

dynamic dissipation is only around 25%. In other words, the

static dissipation is ascribed to dissipate at least the 75% of

the overall power.

B. Performance evaluation

The following analysis compares the performance of the

partitioning heuristics in terms of average power consumption

for different task set parameters. The workload has been gen-

erated using the UUniFast [22] algorithm. Once the heuristics

are executed, the average power consumption is computed

analytically by assuming that all jobs are released at the

beginning of the hyperperiod, meaning that each processor

φj is active for Uj ·H while it is off until next hyperperiod.

This assumption is pessimistic because it leads to having the

maximum number of active cores (∀φj : Uj > 0) for the

longest time (min
φj

Uj).

The first experiment considers the average power consump-

tion obtained from the heuristics varying the number of tasks

(from 25 to 300 with step 25) at three different utilizations:

low (U = 5.0), medium (U = 20) and high (U = 35.0).
The results are shown in Figure 4, Figure 5 and Figure 6,

respectively. Note that, using the EDF policy, the utilization

upper bound is equal to the number of processors (in our case,

48), but it is not easily achievable due to fragmentation.

The first significant result consists of showing the high

average consumption obtained from WFD with respect to

BFD. Such a result is mainly ascribable to the power model of

the board, as it privileges approaches that switch off as many

processor as possible rather than reducing their performance.

Indeed, all the previous work assumed a cubic power function

(p(s) = β · s3), which heavily reduces consumption when

the speed is scaled down. Note that performance is not

affected by the number of tasks, as WFD is slightly affected

by fragmentation. Finally, note that applying either DPM or

DVFS techniques produces the same result.

As already discussed, BFD fits well with this kind of archi-

tecture as it aims at compacting the workload on few cores and

putting the others in low-power state. This approach drastically

reduces the static dissipation, which accounts for at least 75%
of the overall dissipation. According to the presented results,

the higher the number of tasks, the lower the average power

consumption. This can be easily explained by considering that

in a larger task set tasks have smaller utilization, hence the

heuristic can better compact them, reducing fragmentation.

Concerning the strategies applied after task partitioning, the

DVFS approach is more effective up to a certain point, after

which DPM becomes more convenient. Such a turning point

depends on the overall task utilization and the number of tasks.

Basically, for a given utilization, small task sets create more

significant fragmentation and such a spare capacity is better

exploited by slowing the speed down. On the other hand,

when the number of tasks increases, fragmentation reduces

and the smaller slack time is optimized by the DPM approach.

Generally, we can state that the higher the utilization, the

higher the number of tasks that make the DPM strategy more

effective. In the first case (Figure 4), the utilization is low

(U = 5.0) and DPM is already more suitable. When the

utilization is U = 20.0 (Figure 5), the turning point is at

n = 150, while it reaches n = 275 for U = 35.0 (Figure 6).

For the sake of completeness, Figure 7 presents a different

reading key, showing the average power consumption with 150

tasks for different utilizations (U ∈ [5.0, 40.0] with step 2.5).
As previously highlighted, the turning point is at U = 20.0
with 150 tasks. Moreover, Figure 7 shows what happens when

computational times do not entirely scale with the frequency.

More precisely, the higher the value of γ, the lower the

average power consumption obtained by the DVFS approach.

As already highlighted by Bambagini et al. [23], this is due

to the fact that scaling speed with high γ is equivalent to

schedule a task set with lower utilization than the original

one, meaning that lower speeds can be effectively exploited

while no deadline is missed.

V. CONCLUSIONS

This paper has presented a comparison between two op-

posite heuristics: Worst-Fit Decreasing and Best-Fit Decreas-

ing. The first approach aims at exploiting all the available

processors and reducing the overall performance while the

second attempts to reduce the number of active processors

by optimizing execution.

Our analysis showed that, even though the WFD heuristic

is the actual state of art in the research literature, on a

real platform it requires a higher average power than BFD

approach. This result is a direct consequence of modern

hardware which is characterized by high static dissipation

whose impact is around the 75% of the overall consumption.

As future work, we would like to extend the presented

analysis by further considering the fragmentation problem and

addressing the delays related to the shared bus.

 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 360

 370

 25 50 75 100 125 150 175 200 225 250 275 300

A
v
e
ra

g
e
 P

o
w

e
r

[W
a
tt
]

Task number (n)

WFD+DPM

WFD+DVFS

BFD+DVFS

BFD+DPM

Fig. 4. Average power varying the task number at U = 5.0.

 360

 370

 380

 390

 400

 410

 420

 430

 25 50 75 100 125 150 175 200 225 250 275 300

A
v
e
ra

g
e
 P

o
w

e
r

[W
a
tt
]

Task number (n)

 WFD+DPM

 WFD+DVFS

 BFD+DVFS

 BFD+DPM

Fig. 5. Average power varying the task number at U = 20.0.

 455

 460

 465

 470

 475

 480

 485

 50 75 100 125 150 175 200 225 250 275 300

A
v
e
ra

g
e
 P

o
w

e
r

[W
a
tt
]

Task number (n)

WFD+DPM

WFD+DVFS

BFD+DVFS

BFD+DPM

Fig. 6. Average power varying the task number at U = 35.0.

 250

 300

 350

 400

 450

 500

 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

A
v
e
ra

g
e
 P

o
w

e
r

[W
a
tt
]

Utilization (U)

 WFD+DPM
 BFD+DPM

 γ=0.0, BFD+DVFS
 γ=0.5, BFD+DVFS

 γ=0.7, BFD+DVFS
 γ=1.0, BFD+DVFS

Fig. 7. Average power varying U and γ with n = 150.

REFERENCES

[1] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low power cmos
digital design,” IEEE Journal of Solid State Circuits, vol. 27, 1995.

[2] “Acpi web site,” http://www.acpi.info/.

[3] “Dell web site,” http://www.dell.com/.

[4] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu
energy,” in Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, ser. FOCS’95, 1995.

[5] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in Proceedings of the 17th International Symposium

on Parallel and Distributed Processing (IPDPS), 2003.

[6] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo, “An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor,” in Proceedings of

the conference on Design, Automation and Test in Europe (DATE), 2005.

[7] A. Kandhalu, J. Kim, K. Lakshmanan, and R. R. Rajkumar, “Energy-
aware partitioned fixed-priority scheduling for chip multi-processors,” in
Proceedings of the 17th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA), 2011.

[8] J. Huang, C. Buckl, A. Raabe, and A. Knoll, “Energy-aware task
allocation for network-on-chip based heterogeneous multiprocessor sys-
tems,” in Proceedings of the 19th International Euromicro Conference

on Parallel, Distributed and Network-Based Processing (PDP), ser.
PDP’11, 2011.

[9] P. Santiago and C. Jian-Jia, “Single frequency approximation scheme
for energy efficiency on a multi-core voltage island,” in Proceedings of

the 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2013.

[10] V. Petrucci, O. Loques, D. Mosse, R. Melhem, N. A. Gazala, and
S. Gobriel, “Thread assignment optimization with real-time performance
and memory bandwidth guarantees for energy-efficient heterogeneous
multi-core systems,” in Proceedings of the 17th IEEE International

Conference on Real-Time and Embedded Technology and Application

Symposium (RTAS), 2012.

[11] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar,
K. Krishnan, and A. Kumar, “Power and thermal management in the
intel core duo processor,” in Intel technology Journal, vol. 10, 2006.

[12] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDow-
ell, and R. Rajamony, “Power aware computing,” 2002, ch. The case for
power management in web servers.

[13] T. Martin and D. Siewiorek, “Non-ideal battery and main memory
effects on cpu speed-setting for low power,” IEEE Transactions on VLSI

Systems, vol. 9, 2001.
[14] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” Journal of the Association for Computing

Machinery, vol. 20, no. 1, January 1973.
[15] M. Bambagini, F. Prosperi, M. Marinoni, and G. Buttazzo, “Energy

management for tiny real-time kernels,” in Proceedings of the IEEE

International Conference on Energy Aware Computing (ICEAC), 2011.
[16] M. Marinoni, M. Bambagini, F. Prosperi, F. Esposito, G. Franchino,

L. Santinelli, and G. Buttazzo, “Platform-aware bandwidth-oriented
energy management algorithm for real-time embedded systems,” in
Proceedings of the IEEE International Conference on Emerging Tech-

nologies & Factory Automation (ETFA), 2011.
[17] M. Bambagini, M. Bertogna, M. Marinoni, and G. Buttazzo, “An energy-

aware algorithm exploiting limited preemptive scheduling under fixed
priorities,” 2013.

[18] J.-J. Chen and T.-W. Kuo, “Procrastination for leakage-aware rate-
monotonic scheduling on a dynamic voltage scaling processor,” in
Proceedings of the ACM Conference on Language, Compilers, and Tool

support for Embedded Systems, ser. LCTES ’06. ACM, 2006, pp.
153–162.

[19] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-aware
scheduling for periodic real-time tasks,” Computers, IEEE Transactions
on, vol. 53, no. 5, pp. 584–600, 2004.

[20] “Gnu/linux kernel,” https://www.kernel.org/.
[21] “Eembc coremark benchmark,” http://www.eembc.org/coremark/.
[22] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-

bility tests,” Real-Time Systems, vol. 30, no. 1-2, May 2005.
[23] M. Bambagini, G. Buttazzo, and M. Bertogna, “Energy-aware schedul-

ing for tasks with mixed energy requirements,” in Real-Time Scheduling
Open Problems Seminar (RTSOPS), 2013.

