
Abstract1

Scheduling theory generally assumes that real-time
systems are mostly composed of activities with hard
real-time requirements. Many systems are built today by
composing different applications or components in the
same system, leading to a mixture of many different
kinds of requirements with small parts of the system hav-
ing hard real-time requirements and other larger parts
with requirements for more flexible scheduling and for
quality of service. Hard real-time scheduling techniques
are extremely pessimistic for the latter part of the appli-
cation, and consequently it is necessary to use tech-
niques that let the system resources be fully utilized to
achieve the highest possible quality. This paper presents
a framework for a scheduling architecture that provides
the ability to compose several applications or compo-
nents into the system, and to flexibly schedule the avail-
able resources while guaranteeing hard real-time re-
quirements. The framework (called FSF) is independent
of the underlying implementation, and can run on differ-
ent underlying scheduling strategies. It is based on es-
tablishing service contracts that represent the complex
and flexible requirements of the applications, and which
are managed by the underlying system to provide the re-
quired level of service.

1. Introduction

Many previous real-time system design approaches

and scheduling schemes have focused on safety-critical

control applications characterized by stringent timing

constraints. In these applications, missing a single

deadline can jeopardize the entire system behavior and

even cause catastrophic consequences. Compared to

traditional control environments, new applications in

areas such as industrial automation and consumer mul-

timedia systems are characterized by less stringent tim-

ing constraints. In these systems, missing some

deadlines is acceptable and can be tolerated up to a cer-

tain degree. Nevertheless, control on the system’s per-

formance and resource usage is still required, although

with more relaxed constraints, and some of the timing

requirements of the system remain hard.

Consequently, these new applications demand vari-

ous types of tasks and constraints within the same sys-

tem. There are requirements for flexibly sharing the

available resources, and in many cases these require-

ments change dynamically. While off-line guarantees

are still essential for meeting a minimum performance,

different types of requirements and runtime changes

have to be included in the system analysis, such as

demands on quality of service (QoS) or acceptance

probabilities. These systems often demand the coexist-

ence and co-operation of diverse scheduling algorithms

to combine properties. Algorithms might even change

during system’s runtime to better adapt to environment

variations.

Another problem that real-time scheduling has to

face is the difficulty in persuading engineers to use the

most advanced techniques in their applications. Pres-

sure of time to market makes it difficult to spend the

resources needed to understand and implement schedul-

ing theory, to the extent that many practitioners regard

real-time theory as “the solution to the wrong prob-

lem”. In our view, the difficulty is not really with the

“solution”, but rather in the way this solution is pre-

sented to the application developer.

In this paper, we present the architecture framework

of the FIRST (Flexible Integrated Real-time Scheduling

Technologies) project with the objective of providing

engineers with a scheduling framework that represents

a high-level abstraction that lets them concentrate on

the specification of the application requirements, while1. This work has been funded by the Commission of the European 
Communities under contract IST-2001-34140 (FIRST project)

FSF: A Real-Time Scheduling Architecture Framework

M. Aldea*, G. Bernat+, I. Broster+, A. Burns+, R. Dobrin&, J. M. Drake*,

G. Fohler&, P. Gai#, M. González Harbour*, G. Guidi#, J.J. Gutiérrez*,

T. Lennvall&, G. Lipari#, J.M. Martínez*, J.L. Medina*, J.C. Palencia*, M. Trimarchi#

*Dpto. de Electrónica y Computadores, Universidad de Cantabria, Santander, Spain (mgh@unican.es)
+Department of Computer Science, University of York, UK (burns@cs.york.ac.uk)

&Computer Engineering Department, Malardalen University, Vasteras, Sweden (gerhard.fohler@mdh.se)
#ReTiS Lab, Scuola Superiore Sant'Anna, Pisa, Italy (lipari@sssup.it)

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



the system will transparently use advanced real-time

scheduling techniques to meet those requirements.

The framework aims at achieving a trade-off

between predictability in performance and efficiency in

resource utilization, even during overload situations.

The FIRST scheduling framework (FSF) provides for

the co-operation and coexistence of standard schedul-

ing algorithms such as table driven (TD), fixed priority

(FP), and earliest deadline first (EDF). It enables users

to select the best-suited service for individual activities,

rather than the prevalent monolithic approaches enforc-

ing a single regime for the entire system.

The key abstraction in FSF is the use of a hierarchi-

cal scheduling architecture based on servers. Careful

use of servers allows different parts of the system

(whether they are processes, applications, components,

or schedulers) to use budgeting schemes. Not only can

servers be used to help enforce temporal independence,

but a process can interact with a server to query its

resource usage and hence support the kinds of algo-

rithms where execution paths depend on the available

resources.

Server algorithms are defined for particular schedul-

ing schemes, such as fixed priority or EDF. In order to

keep our framework independent of specific scheduling

schemes, we introduce an interface between applica-

tions and the global scheduler, called the service con-

tract. So instead of using parameters of a specific server

algorithm, the application defines its needs in the form

of service contracts, which are independent of the

actual server used. Thus, diverse server algorithms and

implementations, based on a variety of scheduling

schemes can then meet the service contracts. Should the

application be run on a system with a different schedul-

ing scheme, the service contracts remain the same, only

their realization in terms of the specific server algo-

rithms used is different. Application requirements are

mapped to a contract, which is then mapped to the

server parameters by the scheduler. Contracts can be

verified at design time by providing off-line guarantees,

or can be negotiated at runtime, when they may or may

not be admitted.

1.1. Related work

A general methodology for temporal protection in

real-time systems is the resource reservation framework

[15][23][24][28]. The basic idea, which was formalized

by Rajkumar [27], is that each task is assigned a server

that is reserved a fraction of the processor available

bandwidth: if the task tries to use more than it has been

assigned, it is slowed down. This framework allows a

task to execute in a system as if it is executing on a ded-

icated virtual processor, whose speed is a fraction of the

speed of the processor. Thus, by using a resource reser-

vation mechanism, the problem of schedulability analy-

sis reduces to the problem of estimating the

computation time of the task without considering the

rest of the system.

Jones et al present in [12] a model of CPU Reserva-

tions and Time Constraints in the Rialto OS, which was

initially designed as a resource manager with distrib-

uted and real-time capabilities. The system has similari-

ties with the framework presented in this paper because

it defines an abstraction similar to the server (the activ-

ity) that can be used to schedule several threads. This

work has evolved to Rialto/NT which is the implemen-

tation of the Rialto scheduling scheme in a high priority

level of a Windows NT system [13].

Nieh and Lam [26] present SMART, an API for a

fairness-based processor scheduler that fully supports

applications with soft and non real-time, overload man-

agement, any dynamic adaptation.

Recently, many techniques have been proposed for

extending the resource reservation framework to hierar-

chical scheduling. Baruah and Lipari in [19] propose

the hierarchical constant bandwidth server (HCBS)

algorithm, which permits composition of CBS schedul-

ers at arbitrary levels of the hierarchy. A similar work

has been done by Saewong et al [29] in the context of

the resource kernels.  Liu and Deng in [7][8] proposed a

two-level hierarchical architecture, that uses the EDF as

global scheduler and uses a dedicated total bandwidth

server (TBS) for each application. This work has been

later extended by Kuo et al [14] for using rate mono-

tonic as global scheduling algorithm.

Lipari and Baruah in [16][17] presented the band-

width sharing server (BSS) scheduling algorithm that

uses EDF as global scheduling algorithm, and permits

selecting any scheduling algorithm as an application-

level scheduler.  

Feng and Mok [25] presented a general methodology

for hierarchical partitioning of a computational

resource. It is possible to compose schedulers at arbi-

trary levels of the hierarchy. They also propose a simple

sufficient schedulability test for any scheduler at any

level of the hierarchy. 

There have been several efforts in the introduction of

QoS in distributed systems. Wang et al. [32] presented

techniques for dynamically adapting the CORBA Com-

ponents Model (CCM) middleware by introducing

alternative configurations via reflective information in

the containers operation. The Quality Objects project

(QuO) [5] also proposes abstractions and mechanisms

that complement CORBA with concepts [30] similar in

spirit to those presented in this paper.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



1.2. Specific contributions

Compared to these approaches, FSF provides appli-

cation developers a generalized architecture framework

that combines different kinds of requirements:

•co-operation and coexistence of standard real-time

scheduling schemes, time-triggered and event-trig-

gered, dynamic and fixed priority based, as well as

off-line based through a common architecture that is

independent on the underlying scheduling mecha-

nism

•integration of different timing requirements such as

hard and soft, and more flexible notions allowing the

distribution of spare capacity according to the speci-

fied application requirements and capabilities

•temporal encapsulation of subsystems in order to sup-

port the composability and reusability of available

components including legacy subsystems

•integration of the shared resource management

•integrated view of the processor and network

resources for distributed applications

Support for FSF contracts has been implemented in

two POSIX compliant real-time operating systems,

MaRTE [2] and SHARK [9], which are based on FP

and EDF scheduling schemes, respectively, thus illus-

trating the platform independence of the presented

approach.

The rest of the paper is organized as follows. Section

2 summarizes the results of a survey on industrial needs

for real-time applications, leading to a set of require-

ments that FSF should address, and to the definition of

the system model. Section 3 describes the service con-

tracts that allow the applications to specify their flexi-

ble timing requirements independently of the

underlying scheduler. Section 4 briefly discusses the

implementations of FSF that have been developed in

two different operating systems. Finally, section 5 gives

our conclusions.

2. Application Requirements and 

Scheduler Flexibility

Key in FIRST is the concept of integration of com-

plex applications with a variety of real-time require-

ments, including hard real-time behavior as well as soft

requirements. It is noted that in many modern real-time

systems, only a small fraction of the system could be

considered to have hard deadlines, yet most of the rest

of the system might have important timing or perfor-

mance requirements.

The coexistence and cooperation of different sched-

uling schemes is encouraged in the FIRST framework;

different applications with their own scheduling

requirements and algorithms need to be integrated

together on one platform.

2.1. Application Characteristics

The application characteristics and requirements

used to develop the framework were obtained by per-

forming a survey of industrial needs. The range of

products that are called “real-time” is very diverse:

from small embedded control systems, digital multime-

dia devices, consumer electronics and image processing

chips in cameras to large systems like guidance and

control systems for avionics. As systems grow in size,

the amount of critical or hard real-time code does not

grow in proportion, because much of the software is

concerned with less time-critical functionality.

There is a clear trend towards multi-processor solu-

tions, even for smaller systems. In the long term, the

availability of inexpensive single chip computers and

the ability to put multiple custom processing cores on

FPGA integrated circuits indicates the future will

become distributed on more and more processors.

Many industrial control systems are based on conven-

tional industrial processors linked through field busses

and ethernet networks. 

Real-time theory is ineffective in many systems. For

example in larger systems where there is a dynamic

number of processes, perhaps up to 1000 at a time,

forms of worst case analysis are not appropriate

because the worst case is unlikely to occur; to ensure

that all deadlines are met in the worst case leads to very

low utilization. Also, the dynamic nature of such real-

time systems means that it is difficult to use much real-

time systems theory because it is based on assumptions

typically found in static systems, where much is known

about the future demands on the systems. More funda-

mentally, notions such as ‘deadline’ fail to specify

requirements adequately, particularly in a softer system

where scheduling is a battle to maintain a high quality

of service. In particular scenarios, it may be important

to ensure low latency, in others it is more important to

exhibit low jitter. Further, in many cases industry does

not know how to describe or measure quality of service.

The periodicity requirements assumed in most real-

time scheduling techniques are not always simple. For

example, it is common to find systems with variable

period, either on a continuous or discrete scale. The

continuous scale, variable within an upper and a lower

limit, follows the elastic task model [6]. The discrete

model occurs when the period can change to any of a

set of discrete values, and is useful in control systems

with different modes of operation or levels of quality.

A similar situation occurs with the resource usage,

i.e.,  how much processing time each job requires. In

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



addition to the classic model with a minimum execution

time guaranteed by the system, we find systems in

which the execution time may vary on a continuous

scale, such as in any-time algorithms, or in a discrete

scale, such as in N-version or imprecise computation

schemes.

2.2. System Level Integration

Systems consisting of applications which change

their timing behavior over their lifetime are common.

The timing behaviors change either because of software

changes, mode changes, data-dependencies, input/out-

put traffic levels, and other causes. These place a

requirement on the scheduling system to be able to

respond to these changes.

A key concept in the FIRST framework is a ‘con-

tract’ between the application and the scheduler. Con-

tracts can be negotiated at initialization, when

requirements change, or when new software is added to

the system, regardless of whether or not the applica-

tions are previously known to the system. The time to

complete a negotiation must be adjustable by assigning

specific system resources to the part of the system mak-

ing them. Integration of different applications with dif-

ferent local scheduling schemes is important for

supporting component-based methodologies as well as

for integrating legacy code into systems based on the

FIRST framework.

To protect existing contracts and ensure that applica-

tions are sensitive to time-domain failures, it is clear

that the operating system must be capable of enforcing

the timing behavior of applications, even if the applica-

tion attempts (by accident or maliciously) to exceed its

contracted behavior.

2.3. The application model

As a result of the application requirements that we

have discussed, the FIRST framework is able to give

support to systems running one or more applications,

each consisting of a number of schedulable components

that encapsulate a given functionality with timing and

quality of service requirements; components may have

requirements for sharing resources. Each component

may have one or more threads of control, and may even

be distributed among different processing nodes and

networks. The application component negotiates a set

of service contracts, which specify the component

requirements, and then binds each thread (and each

message stream in distributed components) to a con-

tract. Multiple threads may be bound to the same con-

tract if hierarchical scheduling is supported. Although

there may be multiple instances of the same compo-

nent, each used by the same or by different applica-

tions, each instance will have its own threads and

service contracts. Key to understanding the specific

timing requirements supported by the framework to

provide flexible scheduling is the contract model that

will be described next.

3. Service contracts

The service contract is the mechanism that we have

chosen for the application to dynamically specify its

own set of complex and flexible execution require-

ments. From the application’s perspective, the require-

ments of an application or application component are

written as a set of service contracts, which are negoti-

ated with the underlying implementation. To accept a

set of contracts, the system has to check as part of the

negotiation if it has enough resources to guarantee all

the minimum requirements specified, while keeping

guarantees on all the previously accepted contracts

negotiated by other application components. If as a

result of this negotiation the set of contracts is accepted,

the system will reserve enough capacity to guarantee

the minimum requested resources, and will adapt any

spare capacity available to share it among the different

contracts that have specified their desire or ability for

using additional capacity.

As a result of the negotiation process initiated by the

application, if a contract is accepted, a server is created

for it. The server is a software object that is the run-

time representation of the contract; it stores all the

information related to the resources currently reserved

for that contract, the resources already consumed, and

the resources required to handle the budget consump-

tion and replenishment events in the particular operat-

ing system being used. Figure 1 shows the relationship

between the service contract in the application side, and

the server in the underlying implementation

The system may be configured to perform an on-line

schedulability analysis test at negotiation time. If the

test is enabled, a new contract set is accepted only if the

new system situation passes the test. However, because

on-line tests may be suboptimal, for static systems it is

also possible to perform a more exact off-line schedula-

bility analysis test, and disable the on-line analysis. In

that case, a contract set will always be accepted. 

Because there are various application requirements

specified in the contract, they are divided into several

groups, also allowing the underlying implementation to

give different levels of support trading them against

implementation complexity. This gives way to a modu-

lar implementation of the framework, with each module

addressing specific application requirements. The mini-

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



mum resources required by the application to be

reserved by the system are specified in the core module.

The requirements for mutual exclusive synchronization

among parts of the application being scheduled by dif-

ferent servers or among different applications are speci-

fied in the shared objects module. Flexible resource

usage is associated with the spare capacity and dynamic

reclamation modules. The ability to compose applica-

tions or application components with several threads of

control, thus requiring hierarchical scheduling of sev-

eral threads inside the same server are supported by the

hierarchical scheduling module. Finally, the require-

ments of distributed applications are supported by the

distributed and the distributed spare capacity modules.

We will now explain these modules together with their

associated application requirements.

3.1. Core

The core module contains the service contract infor-

mation related to the application minimum resource

requirements, the operations required to create con-

tracts and negotiate them, to bind a thread to a server,

and the underlying implementation of the servers with a

resource reservation mechanism that allows the system

to guarantee the resources granted to each server. The

application requirements specified in the core module

are shown in Table 1. 

The basic application requirements are the minimum

budget and maximum period of the server. The server

will guarantee that every period, the part of the applica-

tion running on it will get, if requested, at least the min-

imum budget. Passing a schedulability test only

guarantees that the minimum requirements specified in

the contract will be satisfied. In particular, for compo-

nents with hard deadlines it is the responsibility of the

application developer to ensure that the execution times

required in each server period by the threads bound to a

contract are within the minimum budget.

Another important timing requirement is the server’s

deadline. The server guarantees that a piece of work of

size less than or equal to the minimum budget and

requested for a server with full capacity will be com-

pleted by the server’s deadline. Since the period may be

adjustable, it is possible to specify that the deadline is

equal to the period.

The workload attribute describes two fundamentally

different models of the work that the server has to man-

age. The first model is the bounded workload, in which

the application can bound the amount of work that it

requests during an interval equal to the server’s period.

We call this work a job. In this model, it is possible for

an application to tell the system that it has completed

the current job (thus allowing the system to make its

current available budget equal to zero), and that it

should be awakened by the system at the beginning of

the next job. If requested, the system can notify the

application about a job overrunning its budget, or miss-

ing its deadline. This is the preferred approach for peri-

odic of sporadic tasks running on top of an FSF server.

The notification can be addressed to a thread under the

server, or to a special-purpose handler thread, created

by the application.

The framework provides the ability to awaken a

bounded workload job in two different ways: timed, or

event driven. The timed wake up is achieved with the

use of a timer or some OS timing mechanism, but the

Figure 1. Contract negotiation process

Application

Contract

Application

requirements

FSF implementation

Server

Copy of contract
Consumed res.
OS resources

Contract

Application

requirements

Server

Copy of contract
Consumed res.
OS resources

negotiation

Operating System

Table 1. Core attributes

Name Description

minimum budget Minimum execution capacity per 

server period

maximum period Maximum server period

workload Whether the workload running on the 

server is bounded or indeterminate

deadline The deadline of the server

D=T Whether the server’s deadline is 

equal to the period or not

budget overrun 

signal

The mechanism to get notification of 

a possible budget overrun for 

bounded workloads

deadline miss 

signal

The mechanism to get notification of 

a possible deadline miss for bounded 

workloads

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



event driven mechanism requires a synchronization

object that is managed by the FSF. Consequently, a

mechanism exists to create such synchronization

objects, and to signal them to awaken a bounded work-

load waiting upon it. In both cases, timed or event-

driven, the new job will only be started after the

server’s budget has been replenished at the next

server’s period.

The second workload model is called indeterminate,

and represents the case in which the application cannot

make any guarantees over the amount of work

requested to be executed inside a server period. In this

case, the server guarantees the minimum budget, and

defers further execution to a next period, if required to

guarantee the execution of the other servers in the sys-

tem. There is no budget overrun or deadline miss notifi-

cation in this case, because there is no concept of a job.

Some application parts may not have any real-time

requirements but may just want to run when the system

is not busy running real-time activities. For this purpose

we provide the ability to run activities in the back-

ground, in a round-robin fashion, and with no time

guarantees. It is possible to specify it by creating a spe-

cial background contract.

With the described services, the core module pro-

vides support for the basic timing requirements of real-

time applications, including the ability to reserve and

get guarantees on execution time budgets, the ability to

specify arbitrary deadlines, and to detect budget over-

runs or deadline misses. This is done independently of

the underlying scheduler; for instance, we could have

fixed priorities with sporadic servers [31], or EDF with

constant bandwidth servers underneath [1].

3.2. Shared objects

It is common for applications to have to share data or

other resources in a mutually exclusive way with other

applications or concurrent parts of the same applica-

tion. Most real-time synchronization protocols are able

to bound the delay that an application may experience

due to the use of shared objects [4], but nevertheless

this delay exists and must be taken into account by the

schedulability test.

The shared objects module of FSF allows the appli-

cation to create shared objects and to specify in the con-

tract attributes all the information required to do the

schedulability analysis. Table 2 shows the attribute

related to shared objects that can be specified as part of

a service contract.

The set of shared objects present in the system

together with the lists of critical sections specified for

each contract are used for schedulability analysis pur-

poses only. A run-time mechanism for mutual exclusion

is not provided in FSF for two important reasons. One

of them is upward compatibility of previous code using

regular primitives such as mutexes or protected objects

(in Ada); this is a key issue if we want to persuade

application developers to switch their systems to the

FSF environment. The second reason is that enforcing

worst case execution time for critical sections is expen-

sive. The number of critical sections in real pieces of

code may be very high, in the tens or in the hundreds

per task, and monitoring all of them would require a

large amount of system resources.

The FSF application does not depend on any particu-

lar synchronization protocol, but there is a requirement

that a budget expiration cannot occur inside a critical

section, because otherwise the blocking delays could be

extremely large. This implies that the application is

allowed to overrun its budget for the duration, at most,

of the critical section, and this extra budget is taken into

account in the schedulability analysis.

3.3. Spare capacity

Many applications have requirements for flexibility

in the amount of resources that can be used. The spare

capacity module allows the system to share the spare

capacity that may be left over from the negotiation of

the service contracts, in a static way. During the negoti-

ation, the minimum requested resources are granted to

each server, if possible. Then, if there is any extra

capacity left, it is distributed among those applications

that have expressed their ability to take advantage of it. 

Table 3 shows the service contract attributes related

to the spare capacity. There are two ways of making use

of spare capacity, described with the granularity

attribute. In the continuous granularity, the application

is able to make useful work for any value of budget

between the minimum and the maximum budget, and for

any period between the maximum and the minimum

period. The case of continuous budget, for instance,

corresponds to anytime algorithms, while the continu-

ous period corresponds to an iterative algorithm, for

instance a video display process, in which the quality

increases with the frequency of execution. 

The discrete granularity is designed for n-version

algorithms that can run different versions with different

quality levels, each with a different value of budget per

Table 2. Shared object attributes

Name Description

list of critical 

sections

Each critical section has a reference to 

the shared object and its worst case exe-

cution time

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



period. The possible values are described in the con-

tract through the utilization set attribute.

The method to distribute the spare capacity is based

on two numeric values called the importance and qual-

ity. The importance is a small integer like a fixed prior-

ity intended for non-cooperative servers: a higher

importance server will get all the available spare capac-

ity before any lower importance server. If there are

servers of the same importance level, they share the

extra capacity proportionally to their quality value,

which is intended for cooperative servers: the share that

they get is proportional to their value divided by the

total quality for their importance level.

The distribution of spare capacity is made every time

there is a negotiation, a renegotiation, or just a change

of quality and importance. The values assigned to each

server are reported to them, so that they can use the

information to know how to run. The assigned capacity

is guaranteed until the next negotiation or change.

3.4. Dynamic reclamation

This module is used to dynamically reclaim any exe-

cution capacity that is not used by the different servers,

so that it can be assigned to other servers that can make

use of it. The application requirements are similar to

spare capacity sharing, except that the application only

knows that it has some additional budget later during its

server period. Therefore, this reclamation is appropriate

for anytime algorithms (i.e., continuous granularity

servers) and is inappropriate for n-version algorithms

which must know the version to run from the beginning

of the current instance. 

Dynamic reclamation is a difficult scheduling prob-

lem that is not completely solved. If new dynamic rec-

lamation techniques become available in the future, the

FSF can immediately take advantage of them because

all the information on how the application can make use

of it is already in the service contract.

Because this module shares its application require-

ments with the spare capacity module, it has no contract

server attributes of its own.

3.5. Hierarchical scheduling

One of the application requirements that FSF

addresses is the ability to compose different applica-

tions, possibly using different scheduling policies, into

the same system. This can be addressed with support in

the system for two-level hierarchical scheduling. The

lower level is the scheduler that takes care of the ser-

vice contracts, using an unspecified scheduling policy

(for instance, a CBS on top of EDF, or a sporadic server

on top of fixed priorities). The top level is a scheduler

running inside one particular FSF server, and schedul-

ing the application threads with whatever scheduling

policy they were designed. Of course the top level

scheduler is just local to a particular server; the only

global scheduler is the lower level server scheduler.

With this approach, it is possible to have in the same

system one application with, for example, fixed priori-

ties, and another one running concurrently with an EDF

scheduler. 

We have chosen to provide the top-level schedulers

inside the FSF implementation because it is simpler

than having a specific API for the application to

develop its own scheduler. We are currently providing

three top-level schedulers: fixed priorities, EDF, and

table-driven. The service contract attributes associated

with the hierarchical scheduling module are shown in

Table 4.

For the scheduling policy attribute the allowed val-

ues are fixed priorities, EDF, table driven, and none.

The latter case corresponds to a server with no top-level

scheduler, that only allows one thread to be bound to it.

The scheduler init info attribute is scheduler-depen-

dent information. For fixed priorities or EDF it is

empty, and for table-driven scheduling it contains the

table with the schedule.

In addition to the server’s attributes each thread that

is bound to the server has its own scheduling parame-

ters, that depend on the particular scheduling policy.

Table 3. Spare capacity attributes

Name Description

granularity indicates how we can make use of 

extra capacity: continuous or dis-

crete utilization values

maximum budget maximum usable budget

minimum period minimum useful period

utilization set set of pairs {budget,period}, used 

for discrete granularity

importance a fixed priority used to distribute 

extra capacity

quality a relative number used to distribute 

extra capacity among servers of the 

same importance

Table 4. Hierarchical attributes

Name Description

scheduling policy This is an identifier for the top-

level scheduling policy

scheduler init info Scheduling-policy-dependent 

information that is supplied at 

server initialization time

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



For instance, they have a priority for fixed priorities, or

a relative deadline for EDF.

3.6. Distribution (core)

FSF is designed to support applications with require-

ments for distribution. Although there are few networks

that are capable of guaranteeing hard real-time require-

ments, there are some field buses, like the CAN Bus,

and some network protocols on standard networks that

provide priority-based hard real-time behavior, and

which can be used to implement the distributed FSF

module.

The first step towards distribution is the ability to

support service contracts for the network or networks

used to interconnect the different processing nodes in

the system. Similar to the core FSF module, the con-

tracts on the network allow the application to specify its

minimum utilization (bandwidth) requirements, so that

the implementation can make guarantees or reserva-

tions for that minimum utilization. We use the same

contract that is used for processing nodes, and thus the

core attributes for distribution are the same as for the

core FSF, described in Table 1, with the addition of the

network id attribute (see Table 5), that identifies the

contract as a network contract for the specified net-

work. The default value for the network id is null,

which means that the contract applies to the processing

node where the contact is negotiated.

For the FSF implementation to keep track of con-

sumed network resources, i.e., the amount of packets

sent in a server period, and to enforce the budget guar-

antees, it is necessary that the information is sent and

received through specific FSF services. To provide

communication in this context we need to create objects

similar to the sockets used in most operating systems to

provide message communication services. We call

these objects communication endpoints, and we distin-

guish send and receive endpoints (see Figure 2). 

A send endpoint contains information about the net-

work to use, the destination node, and the port that

identifies a reception endpoint. It is bound to a network

server that specifies the scheduling parameters of the

messages sent through that endpoint, keeps track of the

resources consumed, and limits the bandwidth to the

amount reserved for it by the system. It provides mes-

sage buffering for storing messages that need to be sent.

A receive endpoint contains information about the

network and port number to use. It provides message

buffering for storing the received messages until they

are retrieved by the application. A receive endpoint

may get messages sent from different send endpoints,

possibly located in different processing nodes.

3.7. Distribution (spare capacity)

In the distributed FSF we want to provide the same

level of support for spare capacity sharing that is pro-

vided for processing nodes. This is a difficult task in the

case of a distributed system, because the decisions

made in one node may affect another one, requiring dis-

tributed consensus. For example, a distributed transac-

tion may have several activities executing in different

processing nodes. One of them is periodic, and the oth-

ers are activated by the arrival of a message from the

preceding activity. Therefore, the latter activities inherit

the period of the first activity (with the additional jitter

introduced by the processing and message transmis-

sion). If the transaction allows a continuous scale of

periods between some minimum and maximum values,

separate negotiations in the network and in the different

processing nodes will most probably result in different

periods because the spare capacity is different in each

node. Since the transaction cannot run with different

periods, there needs to be some renegotiation to change

the period to the maximum obtained (representing the

minimum resource consumption). During this renegoti-

ation things might have changed, requiring further

renegotiation rounds.

We do not want to embed all this complexity into the

FSF implementation. Therefore, we have chosen to

give a minimum support for spare capacity distribution

inside FSF, and leave the consensus problem to some

higher-level manager that would make the negotiations

for the application. For this minimum support there is a

new attribute in the service contract called the granted

capacity flag (see Table 6), which has the implication

that the period or budget of the server can only change

Table 5. Distributed core attributes

Name Description

network id Identifies the network for which the con-

tract is negotiated; if null, the contract is 

negotiated on a processing node

Receive endpointSend Endpoint

receive

send

Application

thread

network

FSF

server

Application

threadcontract

Figure 2. Communication elements in FSF

Table 6. Distributed spare capacity attribute

Name Description

granted 

capacity flag

Once the negotiation is finished, the first 

values for the budget and period given to 

the server must not change automatically

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



if a renegotiation or a change of quality and importance

is requested for it; it may not change automatically, for

instance because of negotiations for other servers. This

provides a stable framework while performing the dis-

tributed negotiation.

For a server with the granted capacity flag set, there

is an operation that is used to return spare capacity that

has been assigned by the system to that server, but that

cannot be used due to restrictions in other servers of a

distributed transaction.

4. Support on operating systems

The FIRST project has defined a clear API for using

the FSF either from the application or from some mid-

dleware agent that manages the quality of service

requirements for a system. The API allows the applica-

tion to be completely independent of the underlying

FSF implementation. Figure 3 shows the main elements

of the API, decomposed into the different modules

described in Section 3. The API is provided for both C

and Ada.

The FSF services and associated API are designed to

be implementable inside any real-time operating sys-

tem. It is also possible to implement them on top of an

operating system that provides the ability to install

application-level schedulers. There is currently no stan-

dard way of providing this kind of functionality, and

therefore each FSF implementation would have to be

tailored to a specific OS. To overcome this difficulty in

the future, an API has been defined to specify services

that allow an OS to provide application-level schedul-

ing support in a uniform way [3], and we have started

the process to request inclusion of this API into the

real-time POSIX standard [10].

As a proof of concepts, the FSF services have been

implemented in two real-time kernels, MaRTE OS1 [2]

and Shark2 [9], both of which follow the POSIX mini-

mum real-time profile [11]. These implementations

show that even with very different scheduling strategies

it is possible to provide a portable FSF API. 

In MaRTE OS the FSF services were implemented

using the application-defined scheduling API proposed

for the POSIX standard. The underlying operating sys-

tem is based on the traditional real-time POSIX fixed

priority scheduling, and we install a secondary applica-

tion defined scheduler that contains the FSF servers and

manages the negotiated contracts. The modules that are

currently implemented in MaRTE OS are the core

(using fixed priorities and sporadic servers [31]), shared

objects (with the SRP [4]), spare capacity sharing, and

the distributed module.

Shark does not implement the application-defined

scheduling API, but instead its kernel was designed

with a modular structure to allow the coexistence and

interplay of different scheduling algorithms. The under-

lying scheduling algorithm is EDF. The server algo-

rithm, used for implementing the service contract, is the

GRUB algorithm (Greedy Reclamation of Unused

Bandwidth [18]). This algorithm automatically adds

dynamic reclamation to the CBS (Constant Bandwidth

Server [1]).The modules that are implemented in Shark

are the core (using EDF and constant bandwidth serv-

ers), spare capacity sharing (restricted to deadlines

equal to periods), dynamic reclamation, hierarchical

scheduling, and the shared objects module (using Band-

width Inheritance (BWI) [20], which extends the prior-

ity inheritance protocol to server based scheduling).

In both implementations, MaRTE OS and Shark, the

admission control algorithm and the spare capacity cal-

culation are implemented via a special thread, called

the service thread, which consumes part of the system

resources in a controlled way. The budget and period of

the service thread can be adjusted by the user, to trade

between timeliness of negotiations and overhead. In

any case, when the budget of the service thread is

exhausted, it can run in the background.

The admission control algorithm used to negotiate a

contract and create its corresponding server if accepted,

is based on utilization tests in both implementations,

Figure 3. Main elements of the FSF API

Core

Set basic attributes
Set timing attributes
Synchronization objects
Negotiate contract
Renegotiate contract
Bind thread to server
Schedule timed job
Schedule triggered job
Get remaining budget
Set service thread data
Negotiate group

Shared objects

Init shared object
Set synchronization attr.

Spare Capacity

Set reclamation attr.
Change quality and

importance

Hierarchical

Init local scheduler
Set scheduling policy
Bind local thread
Set scheduling params.

Distributed (Core)

Set network id
Create send endpoint
Bind endpoint to server
Send message
Create receive endpoint
Receive message

Distr. spare capacity

Set granted capacity flag
Set server capacity

1. MaRTE OS is distributed under the GPL and can be found at: 

http://marte.unican.es/

2. Shark is distributed under the GPL and is downloadable from: 

http://shark.sssup.it/

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



although more elaborate algorithms could be used in

the future, for example based on response time analysis.

Both take into account the blocking effects of shared

object synchronization. The utilization test in Shark is

simpler but is restricted to deadlines equal to periods

for the servers, while the utilization test in MaRTE OS

allows deadlines smaller than or equal to the periods.

We have made extensive tests to evaluate the

approach and the associated implementations. It is sig-

nificant that although very different underlying sched-

ulers and synchronization protocols were used, the test

applications were portable between both systems.

As an example of the experimental data obtained,

Table 7 shows the context switch times measured in

Shark for different hierarchical scheduling strategies.

These experiments were executed on a (rather slow)

Pentium Celeron running at 300 Mhz. The test applica-

tion consisted of 3 servers, each one with a different

local scheduler, one with EDF, the second one with

Fixed Priority (FP) and the third one with Round Robin

(RR). We measured the maximum context switch time

between tasks belonging to the same server and

between tasks belonging to different servers. The over-

heads for the hierarchical scheduling structure in Shark,

and consequently also for the simpler case in which no

hierarchical scheduling is supported, are comparable to

the overhead for a normal context switch.

Figure 4 shows the time it takes to make a negotia-

tion for the network (a 100Mb/s real-time ethernet),

under the distributed FSF in MaRTE OS, in a system

with four processing nodes, in which all the negotia-

tions are made by a single node, with delays between

negotiations. The contracts specify a network utiliza-

tion of 1%, and have deadlines equal to periods. The

admission test in this case is a plain rate monotonic uti-

lization test, which gives constant time in relation to the

number of servers, and has a utilization bound of 69%. 

Figure 5 shows the results of reachable utilization in

Shark. In this experiment the minimum and maximum

utilization obtainable through the spare capacity shar-

ing mechanism were measured for systems with a

increasing number of servers. The total utilization of

the servers was bounded to 70%. We can see how the

spare capacity is completely distributed, with no differ-

ence between the minimum and maximum utilizations

obtained in the different runs of the experiment. 

The scalability of FSF has to be analyzed from two

points of view. From the execution runtime overhead,

the scheduling algorithms used to manage the server

information and schedule the threads have O(log n)

complexity, where n is the number of servers currently

instanced in the system. Adding the server management

scheme on top of the EDF or fixed priority scheduler

does not add further complexity to the algorithm, so the

framework is very scalable. From the point of view of

negotiation times, the scalability depends on the partic-

ular admission test implemented. For example, in Shark

we implemented an utilization based test that had the

restriction of deadlines equal to periods, and the advan-

tage of a linear dependency, O(n), on the number of

servers. In MaRTE OS we used a more elaborate utili-

zation test that can be used for deadlines less than or

equal to the periods, which has a time dependency of

O(n2), making it a bit less scalable. Of course, off-line

admission test may be carried out for a fully scalable

approach.

Table 7. Maximum context switch times in case of 

hierarchical schedulers. Times in Ps.

EDF FP RR

EDF 14.787 11.497 11.503

FP - 11.793 15.749

RR - - 25.787

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Servers

T
im

e
 (

m
s
)

Figure 4. Network negotiation times

Figure 5. Reachable Utilization in Shark

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



The framework has been successfully used in three

different case studies: a multimedia application, an arti-

ficial intelligence application for soccer robots, and a

distributed controller for an industrial robot. In two of

the case studies, the applications were already built, and

they were migrated to FSF, taking advantage of the new

real-time features built into FSF, such as the ability to

guarantee minimum processing resources and network

bandwidth. For instance, it was possible to combine in

the same network hard real-time traffic for robot con-

trol operations (with 10-50 millisecond hard deadlines)

with image transmission over the network. Migration to

the FSF was straightforward as it did not require

changes to the software architecture. The other case

study had software specifically developed with the FSF

API in mind, and it showed the ease of use, even to

novice users.

5. Conclusions and future work

In this paper, we have presented the scheduling

architecture proposed in the FIRST (Flexible Integrated

Real-Time Scheduling Technologies) project. It pro-

vides for the coexistence and cooperation of diverse

real-time scheduling schemes, in particular table

driven, fixed priority, and earliest deadline, and inte-

grating of different task types such as hard and soft, or

more flexible notions. The FIRST scheduling frame-

work, FSF, proposes a hierarchical scheduling structure

based on servers. Application requirements are defined

as service contracts which provide an interface layer to

the underlying servers provided by the operating sys-

tem. Contracts can be verified at design time by provid-

ing off-line guarantees, or can be negotiated at runtime,

when they may or may not be admitted.

FSF provides for the temporal encapsulation of sub-

systems to support the composability and reusability of

available components including legacy subsystems.

FSF also represents a higher level of abstraction rela-

tive to the operating system primitives. It provides an

abstract API that makes time a first class citizen, mak-

ing it easier to build real-time applications. Instead of

concentrating on condition variables, timers, or other

low-level RTOS mechanisms, the application developer

is able to think in terms of deadlines, execution time

budgets, or high-level synchronization primitives.

FSF has been implemented in two contrasting

POSIX compliant real-time operating systems, MaRTE

and Shark, which are based on fixed priority and EDF

scheduling schemes, respectively, thus illustrating the

platform independence of the presented approach. The

implementation has proved to be feasible, efficient, and

easy to use. It has been successfully used to implement

a distributed controller for an industrial robot, a multi-

media application, and an artificial intelligence applica-

tion controlling a team of soccer robots. These

implementations and case studies have shown that FSF

can be implemented efficiently with moderate effort, is

effective and easy to use from the application, and can

be used in distributed systems both in the processors

and in the network. Both implementations are available

as free software from their respective operating system

web pages.

In summary, the FSF defines the basis of a new flex-

ible scheduling strategy, and opens a new line of future

research in design methodologies that help in translat-

ing application requirements into the best possible set

of contracts to achieve the highest level of resource uti-

lization and quality. Future work also includes

enhanced on-line schedulability analysis and derivation

methods for server parameters, as well as the develop-

ment of high level transaction management middle-

ware.

References

[1] L. Abeni and G. Buttazzo. “Integrating Multimedia

Applications in Hard Real-Time Systems”. Proceedings

of the IEEE Real-Time Systems Symposium, Madrid,

Spain, December 1998

[2] M. Aldea Rivas and M. González Harbour. “MaRTE OS:

An Ada Kernel for Real-Time Embedded Applications”.

Proceedings of the International Conference on Reliable

Software Technologies, Ada-Europe-2001, Leuven,

Belgium, Lecture Notes in Computer Science, LNCS

2043, May, 2001.

[3] M. Aldea Rivas and M. González Harbour. “POSIX-

Compatible Application-Defined Scheduling in MaRTE

OS” Proceedings of 14th Euromicro Conference on Real-

Time Systems, Vienna, Austria, IEEE Computer Society

Press, pp. 67-75, June 2002.

[4] T.P. Baker. “Stack-Based Scheduling of Realtime

Processes”, Journal of Real-Time Systems, Volume 3,

Issue 1 (March 1991), pp. 67–99.

[5] BBN Technologies. Quality Objects (QuO). http://

quo.bbn.com/

RT-EP Ethernet

Video acquisition
Robot Controller Man-Machine Interface

Video Monitor

Tile simulator core Image Analyser

Figure 6. Industrial robot controller implemented with 

distributed FSF

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.



[6] G. Buttazzo, G. Lipari, L. Abeni. “Elastic Task Model For

Adaptive Rate Control”, The 19th IEEE Systems

Symposium (RTSS98), Madrid, Spain, December 2-4,

1998, pp 286-295.

[7] Z. Deng, J.W.S. Liu, and J. Sun. “A scheme for

scheduling hard real-time applications in open system

environment”. In Proceedings of the Ninth Euromicro

Workshop on Real-Time Systems, 1997.

[8] Z. Deng and J.W.S. Liu. “Scheduling real-time

applications in open environment”. In Proceedings of the

IEEE Real-Time Systems Symposium, December 1997.

[9] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A New

Kernel Approach for Modular Real-Time systems

Development”, Proceedings of the 13th IEEE Euromicro

Conference on Real-Time Systems, Delft, The

Netherlands, June 2001.

[10]ISO/IEC 9945-1:2003. Standard for Information

Technology -Portable Operating System Interface

(POSIX).

[11]IEEE Std. 1003.13-2003. Information Technology -

Standardized Application Environment Profile- POSIX

Realtime and Embedded Application Support (AEP). The

Institute of Electrical and Electronics Engineers.

[12]M.B. Jones, D. Rosu, and M.C. Rosu. “CPU reservations

and Time Constraints: efficient, Predictable scheduling of

Independent Activities”. Proceedings of the 16th ACM

Symposium on Operating systems Principles (SOSP),

Saint.Malo, France, pp. 198-211, 1997.

[13]M.B. Jones, J. Regehr. “CPU Reservations and Time

Constraints: Implementation Experience on Windows

NT”. Proceedings of the Third USENIX Windows NT

Symposium, Seattle, Washington, pp. 93-102, 1999.

[14]T.W. Kuo and C.H. Li. “Fixed-priority-driven open

environment for real-time applications”. In Proceedings

of the IEEE Real Systems Symposium, December 1999.

[15]C. Lee, R. Rajkumar, and C. Mercer. “Experiences with

Processor Reservation and Dynamic QOS in Real-Time

Mach”. In Proceedings of Multimedia Japan, March 1996.

[16]G. Lipari. “Resource Reservation in Real-Time Systems”.

PhD thesis, Scuola Superiore S.Anna, Pisa, Italy, 2000.

[17]G. Lipari and S. Baruah. “Efficient scheduling of multi-

task applications in open systems”. In IEEE Proceedings

of the 6th Real-Time Systems and Applications

Symposium, June 2000.

[18]G. Lipari and S.K. Baruah “Greedy reclamation of unused

bandwidth in constant bandwidth servers” IEEE

Proceedings of the 12th Euromicro Conference on Real-

Time Systems, Stockholm, Sweden, June 2000.

[19]G. Lipari and S. Baruah. “A hierarchical extension to the

constant bandwidth server framework”. In Proceedings of

the Real-Time Technology and Application Symposium,

June 2001.

[20]G. Lipari, G. Lamastra and L. Abeni, “Task

Synchronization in Reservation-Based Real-Time

Systems”, IEEE Transactions on Computers, December

2004.

[21]J.W.S Liu, K.J. Lin, W.K. Shih, J.Y. Chung, A. Yu, and

W. Zhao, “Algorithms for scheduling imprecise

computations”, IEEE Computer,  May 1999.

[22]J.W.S. Liu, K.J. Lin, W.K. Shih, R. Bettati, and J.Y.

Chung, “Imprecise Computations”, IEEE Proceedings,

vol. 82, p. 1-12, January 1994.

[23]C.W. Mercer, R. Rajkumar, and H. Tokuda. “Applying

hard real-time technology to multimedia systems”. In

Workshop on the Role of Real-Time in Multimedia/

Interactive Computing System, 1993.

[24]C.W. Mercer, S. Savage, and H. Tokuda. “Processor

Capacity Reserves: Operating System Support for

Multimedia Applications”. IEEE International

Conference on Multimedia Computing and Systems, pp.

90-99, May 1994.

[25]A.K. Mok and X.A. Feng. “Towards compositionality in

real-time resource partitioning based on regularity

bounds”. In IEEE Proceeding of the Real-Time Systems

Symposium, 2001. 

[26]J. Nieh and M.S. Lam. “The Design, Implementation and

Evaluation of SMART: A Scheduler for Multimedia

Applications”. Proceedings of the 16 ACM Symposium

on Operating Systems Principles, St. Malo, France,

October, 1997.

[27]R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.

“Resource kernels: A resource-centric approach to real-

time and multimedia systems”. In Proceedings of the

SPIE/ACM Conference on Multimedia Computing and

Networking, January 1998.

[28]D. Reed and R. F. (eds.). “Nemesis, the kernel overview”,

May 1997. 

http://sherry.ifi.unizh.ch/

reed97nemesis.html

[29]S. Saewong, R. Rajkumar, J. Lehoczky, and M.H. Klein.

“Analysis of hierarchical fixed priority scheduling”. In

Euromicro Conference on Real-Time Systems, June 2002.

[30]R. Schantz, J. Loyall, M. Atighetchi, and P. Pal.

“Packaging Quality of Service Control Behaviors for

Reuse”. ISORC 2002, The 5th IEEE International

Symposium on Object-Oriented Real-time distributed

Computing, April 29 - May 1, 2002, Washington, DC.

[31]B. Sprunt, L. Sha and J.P. Lehoczky. “Aperiodic Task

Scheduling for Hard-Real-Time Systems”. The Journal of

Real-Time Systems, Kluwer Academic Publishers, 1, pp.

27-60, 1989.

[32]N. Wang, D.C. Schmidt, M. Kircher, and K.

Parameswaran. “Towards an Adaptive and Reflective

Middleware Framework for QoS-enabled CORBA

Component Model Applications”. IEEE Distributed

Systems On Line (Vol. 2, No. 5) May 2001.

Proceedings of the Twelfth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’06) 

0-7695-2516-4/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:32 from IEEE Xplore.  Restrictions apply.


