
On the Average Complexity of the Processor

Demand Analysis for Earliest Deadline

Scheduling

Giuseppe Lipari1, Laurent George2, Enrico Bini3, Marko Bertogna4

1 LSV, ENS - Cachan, France ‡

2 University of Paris-Est, LIGM, France
3 Lund University, Sweden

4 University of Modena, Italy

Abstract. Schedulability analysis of a set of sporadic tasks scheduled
by EDF on a single processor system is a well known and solved problem:
the Processor Demand Analysis is a necessary and sufficient test for EDF
with pseudo-polynomial complexity. Over the years, many researchers
have tried to find efficient methods for reducing the average-case running
time of this test. The problem becomes relevant when doing sensitivity
analysis of the worst-case execution times of the tasks: the number of
constraints to check is directly linked to the complexity of the analysis.
In this paper we describe the problem and present some known facts,
with the aim of summarising the state of the art and stimulate research
in this direction.

1 Introduction

The Processor Demand Analysis is a necessary and sufficient algorithm for test-
ing the schedulability of a set of real-time synchronous periodic or sporadic tasks
to be scheduled by the Earliest Deadline First on a single processor. It was first
proposed by Baruah et al. [2], and it was later extended to account for more
complex task models, shared resources, etc.

The core of the analysis is the computation of the Demand Bound Function:
the analysis consists in checking that in each interval of time the function does
not exceed the length of the interval (more details in Section 2). The problem
has been proven to be NP-Hard [2], in the sense that in the worst case it is
necessary to analyse the demand bound function over a number of intervals that
is exponential in the number of tasks.

Nevertheless, very efficient algorithms have been proposed. A notable ex-
ample is the QPA algorithm [4], which iterates over the values of the demand
bound function in intervals of decreasing length. In average it requires a very
small number of steps to assess the schedulability.

‡ The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No.
246556.

George and Hermant [3] proposed a characterisation of the space of compu-
tations times of the tasks (named C-space) that makes the set schedulable. In
practice, the constraint that the demand bound function in a certain interval
must be less than the length of the interval is interpreted as an inequality where
the computation times are unknown. The schedulability test is a set of inequal-
ities that defines a convex polyhedron in the space of the computation times. In
general, each different interval produces a different inequality, hence the number
of inequalities is exponential. George and Hermant observed that, given a task
set, many of the inequalities are redundant, in the sense that they can be safely
eliminated without introducing any new solution. In particular, as we will see
in Section 3, the number of necessary inequalities is much lower than the total
number of intervals that are necessary in theory.

In this paper we further investigate the method proposed by George and
Hermant, with the goal of trying to gain additional insight into the complexity
of the problem of testing the schedulability of EDF-scheduled task systems.

2 Background

A real-time task τi is an infinite sequence of jobs, Ji,k(ai,k, ci,k, di,k), where ai,k
is the job’s arrival time, ci,k is its computation time and di,k is its absolute
deadline. The goal of a real-time scheduling algorithm is to execute the sequence
of incoming jobs on the hardware machine (in our case a single processors) so
that each job Ji,k executes exactly ci,k units of execution time in its execution
windows [ai,k, di,k]. The Earliest Deadline First scheduling algorithm selects the
active job with the earliest absolute deadline.

A sporadic task τi is characterised by a triplet (Ci, Di, Ti), where Ci is the
worst-case computation time, Di is the relative deadline and Ti is the period, or
minimum inter-arrival time. For a sporadic task, the distance between the arrival
times of two consecutive jobs is greater than or equal to Ti, ∀k, ai.k+1−ai,k = Ti.
Moreover, the deadline is computed as di,k = ai,k + Di, and the computation
time never exceeds the worst case computation time, ∀k, ci,k ≤ Ci. In this paper
we restrict our attention to sporadic tasks with constrained or implicit deadline,
i.e., having Di ≤ Ti, or Di = Ti, respectively.

The hyperperiod is computed as the least common multiple of the task peri-
ods: H = lcm(T1, T2, . . . , Tn).The utilisation of a task τi is defined as Ui = Ci/Ti.
The total utilisation of a task set τ composed of n sporadic tasks is denoted as
U =

∑n

i=0 Ui.
The demand bound function dbf(t) is defined as the total amount of compu-

tation time of the tasks that have arrival time and deadline in [0, t]. For a set of
real-time sporadic tasks, the dbf function can be computed as

dbf(t) =
n
∑

i=1

(⌊

t−Di

Ti

⌋

+ 1

)

Ci. (1)

Notice that the dbf is a step-wise function which changes values at the absolute
deadlines of the jobs. We define as dSet(L) the set of all absolute deadlines of

all jobs in interval [0, L]:

dSet(L) = {di,k|di,k ≤ L}. (2)

The following theorem gives a necessary and sufficient condition for schedu-
lability.

Theorem 1. A set of sporadic real-time tasks T is schedulable on a single pro-
cessor by the earliest deadline first scheduling algorithm if and only if:

∀t ∈ dSet(H) dbf(t) ≤ t (3)

For a constrained deadline task set with U < 1, when the computation times
of all tasks are known, it is possible to reduce the amount of deadlines to be
checked to the first busy period, or to interval [0, L∗], as shown in [1], where

L∗ =

∑n

i=1 Ui(Ti −Di)

1−
∑n

i=1 Ui

.

3 Problem statement

Suppose that we have a task set where we know the periods and the relative
deadlines, whereas the worst-case computation times are unknown. Our goal is
to compute the C-space [3], i.e., all the possible values of the worst-case compu-
tation times that make the system schedulable.

To do this, we set-up a system of inequalities using Theorem 1. In particular,
we define

ni(t) =

⌊

t−Di

Ti

⌋

+ 1,

i.e. the number of instances of task τi entirely contained in interval [0, t]. Then
the inequality can be written as:

{

∀t ∈ dSet(T)
∑n

i=1 ni(t)Ci ≤ t
∀i = 1, . . . , n, Ci ≥ 0

(4)

This set of inequality defines a convex polyhedron in the space of the variables
Ci: all solutions to this set of inequalities are the vectors that we are looking for.

Since computation times are unknown, we have to analyse all deadlines in
dSet(H). However, the number of points in dSet(H) may be very large, due to
a large hyperperiod. In turns, every point in dSet(H) corresponds to a linear
inequality. Therefore, it is natural to ask if all such inequalities are strictly
necessary.

An inequality can be safely removed if, by doing so, no new solution is intro-
duced. George et al. [3] have shown that indeed it is possible to eliminate many
such inequalities. In their paper, they use the Simplex algorithm, to identify the
inequalities to remove. Their approach is presented in section 4.

Another equivalent method is to use a geometric characterisation of the poly-
hedron and computing the smallest convex enveloping polyhedron. We will de-
scribe this method in more details in the Section 6.

How many inequalities are removed by applying the elimination procedure?
How many are left? Is there any special pattern to identify the minimum set
of inequalities, to help us reduce the complexity of the problem in the average
case?

This paper reports some early investigation on this problem. While we have
no definitive answer to these questions, we believe that writing the known facts
that we discovered by performing extensive experiments may convince other
researchers to help us solve the problem.

4 Linear Programming approach

In [3], George et al. show how to characterise the space of feasible WCETs.
Considering the WCETs in X = (x1, . . . , xn) as variables and D,T constants,
the C-space is defined by a set of s+1 constraints, where the first s constraints are
derived from the inequalities in Equation 4 corresponding to absolute deadlines
in dSet(H) and the (s + 1)th constraint is derived from the load utilisation
(U ≤ 1).

They show how to prune the set dSet(H) to extract the subset of absolute
deadlines representing the most constrained times characterising the C-space.
For any time ti ∈ dSet(H), they formalise as a linear programming problem in
which the constraint corresponding to ti is removed, and the objective function
is to maximise dbf(ti). More formally:

Linear Programming Problem: LP 1

Maximise dbf(ti)
With x1 ≥ 0, . . . , xn ≥ 0 positive real variables
Under the constraints:
⋂s

k=1,k 6=i {dbf(tk) ≤ tk}

In [3], the author show that the space of feasible WCETs is convex. Hence,
LP1 can be solved by using the Simplex Algorithm. If the solution of the problem
is dbf(ti) ≤ ti, then the corresponding inequality (that was just removed to
obtain LP1) is redundant, and can safely be eliminated. In fact, the maximum
value that the dbf(ti) can assume is however inferior to ti even without imposing
the constraint. On the other hand, if dbf(ti) > ti, the corresponding constraint
cannot be eliminated without enlarging the C-space.

4.1 Numerical Example

We consider a sporadic task set τ = {τ1, τ2, τ3}, composed of three sporadic
tasks τi, where, for any task τi, Ti and Di are fixed, and xi ∈ R

+, the WCET of
task τi, is variable.

– τ1 : (x1, T1, D1) = (x1, 7, 5);
– τ2 : (x2, T2, D2) = (x2, 11, 7);
– τ3 : (x3, T3, D3) = (x3, 13, 10).

In this example, we have: Dmin = 5 and H = 1001. To characterise the
C-space, we have to consider all absolute deadlines in dSet(H) in time interval
[5, 1001). The cardinality m of dSet(H) is 281.

Therefore, we apply the simplex algorithm on the Linear Programming prob-
lem LPi, for any time ti ∈ dSet(H), starting from time tm down to time t1
(to optimise the computation). We obtain the following subset S1 of times in
dSet(H):

S1 = {5, 7, 10, 12, 19, 40} ⊆ M.

Since:

{

x1 + x2 ≤ 7
2 x1 + x2 + x3 ≤ 12

⇒ 3 x1 + 2 x2 + x3 ≤ 19

the set can be further reduced to:

S2 = {5, 7, 10, 12, 40} ⊆ S1.

The exact deadline set characterising the C-space is therefore {5, 7, 10, 12, 40}.

4.2 Experiments

We now study the performance of the simplex for pruning the elements in S, in
the case of constrained deadlines (∀i ∈ [1, n], Di ≤ Ti).

The first question we ask is how large is the number of points in dSet before
the reduction. This number strongly depends on the hyperperiod: if periods are
co-prime, the hyperperiod can be very large. Suppose that all periods are prime
with respect to each other. Then the total number of deadline points generated
by task i is

∏n

j=1,j 6=i Tj , and the total number of points is:

|dSet| =

n
∑

i=1

n
∏

j=1,j 6=i

Tj.

Of course, if the periods are multiples of each other, the hyperperiod and the
number of points become much lower.

Notice that the number of constraints in dSet(H) depends more on the value
of the periods, than on the number of tasks (the number of constraints can be
small even for a high number of tasks).

We generated 100,000 task systems, each one containing 3 tasks. For each
system, we proceed as follows:

– The period of each task is uniformly chosen from [1, 100]

– The deadline of any task τi(Ci, Ti, Di) is Di = αTi. α is chosen in the
intervals [0, 0.8] and [0.8, 1] with a granularity of respectively 0.1 and 0.025.

We focus on the influence of α on the size of the dSet(H) after pruning the
constraints.

Figure 1 shows the results of our analysis. The average number of elements
in S over all generated systems is represented by the solid line and associated
to the left axis as a function of α. The dotted line refers to the average number
of elements obtained after the simplex is applied to the linear programming
problem LP1 and must be read according to the right axis, as a function of α.

Fig. 1. Reduction of elements in S with LP1

We notice that the number of elements which curb the C-Space inch-up in
[0.1, 0.6] then descend when α tends toward 1. If α = 1, we are in the special
case of implicit deadlines where the only constraint is the processor utilisation
constraint: U =

∑n

i=1
xi

Ti

≤ 1.
In all generated systems with α < 1, we have found that the number of

constraints before and after pruning the set S is respectively higher than 3570
and less than 12. For a load less then 0.6, the average number of constraints in
S after pruning the elements in S is less than or equal to 4. Similar trends are
confirmed for larger task sets.

This confirms that the average complexity of the feasibility problem is much
smaller than the worst-case. The Simplex is very effective in this reduction. How-
ever, the Simplex is itself an algorithm with high computational complexity in
the worst-case: and the Simplex must be run for every point in dSet(H). There-
fore, even if the final number of points is very low, to obtain such a reduction
we need to apply a complex algorithm an exponential number of times.

We then need to investigate if there is some other property of the problem
that can be used to reduce the number of points.

5 The definitive idle time approach

One explanation for the increasing trend in Figure 1 can be given by the presence
of definitely idle times.

Definition 1. A time td is said to be a definitive idle time (DIT) if at time
td there is no task released before td having an absolute deadline after td.

A DIT must remain idle for any value of the computation times that makes
the task set schedulable. In facts, a DIT is a time in which no schedulable job
can execute.

A DIT exists only if all tasks in the task set have constrained or implicit
deadlines (i.e. ∀i,Di ≤ Ti). In this case, one DIT is point H , because at the
hyperperiod all jobs must have terminated, and no new job has arrived yet.

Consider, as an example, the task set consisting of two tasks, τ1 = (D1 =
5, T1 = 8) and τ2 = (D2 = 9, T2 = 15). All times in [13, 15] are definitely idle
because τ1 has jobs J11 = (0, 5), J12 = (8, 13), J13 = (16, 21), . . . , and τ2 has jobs
J21 = (0, 9), J22 = (15, 24), . . . , and there is no job active in interval [13, 15].
Therefore, for any value of C1 and C2 for which the task set is schedulable,
interval [13, 15] will remain idle, and hence any initial busy period has length
less than 13.

It is easy to show that all constraints corresponding to deadlines after t = 13
are redundant.

Lemma 1. Let t1 be a definitely idle time. Then for any t > t1, dbf(t) ≤ t is a
redundant inequality.

Proof. Since t1 is a DIT, for any t > t1 we can rewrite:

dbf(t) = dbf(t1) + dbf(t− t1) = dbf(d1) + dbf(d2)

where d1 is the latest deadline no later than t1, and d2 is the latest deadline no
later than (t − t1) after a critical instant, i.e., the synchronous periodic arrival
of all task instances.

Then
{

dbf(d1) ≤ d1

dbf(d2) ≤ d2
⇒ dbf(t) ≤ d1 + d2 ≤ t

⊓⊔

Clearly, the smaller the ratio between relative deadlines and periods, the
highest is the probability that the first DIT happens quite soon in the schedule.
Hence, one possible reason for the trend in Figure 1.

Consider again the previous example: time 13 is the first DIT, hence only
deadlines dSet(13) = {5, 9, 13} have to be considered, and in fact the correspond-
ing three inequalities are all non redundant. Therefore, thanks to the concept
of DIT, in this particular example we defined precisely the minimum set of in-
equalities. However, this is not true in general. Consider the example task set in
Table 1.

Tasks D T Jobs Windows

τ1 7 9 [0, 7], [9, 16], [18, 25], [27, 34]
τ2 12 15 [0, 12], [15, 27], [30, 42]

Table 1. Example 2

The first DIT is at time 27, and all deadlines in [0, 27] are dSet(27) =
{7, 12, 16, 25, 27}: of these, the inequalities corresponding to {7, 12, 16, 27} are
necessary, while the inequality corresponding to deadline 25 is redundant. In
fact,

{

2C1 + C2 ≤ 16

C1 ≤ 9
⇒ 3C1 + C2 ≤ 25.

Therefore, not all deadlines before the first DIT correspond to necessary in-
equalities. As the ratio between deadlines and periods approaches 1, and as the
number of tasks n increases, the first DIT happens quite late in the schedule;
nevertheless, many inequalities are still redundant, and the minimum number of
necessary inequalities is small.

5.1 First definitive idle time computation

Notice that td = H is a DIT in the constrained deadlines case. Indeed, W (H) =
U ·H and

ni(H) =

⌊

H + Ti −Di

Ti

⌋

=
H

Ti

+

⌊

Ti −Di

Ti

⌋

=
H

Ti

as Di ≤ Ti. Thus dbf(H) = U ·H = W (H): for constrained deadlines, H is not
necessarily the first DIT.

Our goal now is to propose an algorithm to compute the first DIT before H ,
if it exists. For a task τi, a first DIT td corresponds to a time between a deadline
of τi and the next release time of τi after this deadline. This corresponds modulo
the task period to a time between [Di, Ti].

Thus, finding the first DIT is equivalent to find the first time td satisfying:

∀i, td = ai Mod Ti

ai ∈ [Di, Ti]
(5)

This problem can be solved by using the general Chinese Remainder Theo-
rem.

Theorem 2 (General Chinese Remainder Theorem). Suppose T1, T2, . . . , Tn

are positive integers which are pairwise coprime. Then, for any given sequence
of integers a1, a2, . . . , an, there exists an integer x solving the following system
of simultaneous congruences.

x ≡ a1 (mod T1)

x ≡ a2 (mod T2)

...

x ≡ an (mod Tn)

Furthermore, all solutions x of this system are congruent modulo the product,
H = T 1T 2 . . . Tn

Notice that the theorem requires all integers to be pairwise coprime. In this
particular case, one DIT is the solution of:

tidle =
n
∑

i=1

ai
H

Ti

[(

H

Ti

)]−1

Ti

(mod T1T2 · · ·Tn)

for ai ∈ [Di, Ti]

(6)

where [a−1]b stands for the multiplicative inverse of a (mod b) i.e. the number
y such that ay = 1 (mod b). td is thus the minimum value satisfying equation 5
i.e:

td = minai∈[Di,Ti]tidle (7)

If we compute the first definitive idle time in the example used for the lin-
ear programming approach where periods are all pairwise coprimes and H =
T1T2T3 = 1001:

– τ1 : (x1, T1, D1) = (x1, 7, 5);
– τ2 : (x2, T2, D2) = (x2, 11, 7);
– τ3 : (x3, T3, D3) = (x3, 13, 10).

We find the minimum value of tidle for a1 = 6, a2 = 7 and a3 = 10:

td = a1T2T3[(T2T3)
−1]T1

+ a2T1T3[(T1T3)
−1]T2

+ a3T1T2[(T1T2)
−1]T3

= 6 · 11 · 13 · 5 + 7 · 7 · 13 · 4 + 10 · 7 · 11 · 12 = 16078

and 16078 (mod T1T2T3) = 62. Thus td = 62. Hence, according to this approach,
we only need to consider the deadlines in [0, 62]. To these, we can apply the
Simplex algorithm, thus reducing considerably the time to derive the minimum
set of inequalities.

In the general case where periods are not coprime, it is possible to use one
of the algorithms for solving systems of simultaneous congruences, for example
the method of successive substitutions.

Thus, applying the definitive idle time approach can help reducing the initial
time interval to consider before applying the linear programming approach.

6 Geometric interpretation

We now look at the problem from a slightly different point of view. As discussed
in Section 3, for each deadline d ∈ dSet(L), we have an inequality of the form

n
∑

i=1

ni(d)Ci ≤ d

where ni(d) is the number of jobs of τi entirely included in interval [0, d]. Using
some simple algebra, we can rewrite the inequality as:

n
∑

i=1

ni(d)Ti

d
Ui ≤ 1

In vectorial form:
V(d) ·U ≤ 1 (8)

where V(d) is the vector whose i-th component is ni(d)Ti

d
, U is the vector of task

utilisations, and the dot represents scalar product. Hence, the set of deadlines
defines a set of vectors V in the space of the task utilisations.

A vector is redundant if it can be expressed as a linear combination of other
vectors with positive coefficient whose sum is less than 1.

Theorem 3. A vector V(d) is redundant is there exists at least two other vectors
{V(d1), . . . ,V(dh)}, h ≥ 2 such that

V(d) = k1V(d1) + . . .+ kkV(dh),

h
∑

j=1

kj ≤ 1

Proof. Equation (8) must be true for all vectors. We show that under the hy-
pothesis, the inequality for d can be eliminated.

V(d) ·U =

h
∑

j=1

kjV(dj) ·U ≤

j
∑

h=1

kj ≤ 1

⊓⊔

The implication of the Theorem is that the set of necessary points deadlines
is identified by the convex hull of all the points V(d), i.e. the most external
points that define a convex polyhedron in the utilisation space. To clarify the
issue, let us make an example.

Consider the task set of Table 2. The first DIT is at 38, hence the set of dead-
lines to consider is: dSet(38) = {6, 12, 14, 22, 25, 30, 38}. Each of these deadlines
corresponds to a vector in the space of utilisations < U1, U2 >. The resulting
space is shown in Figure 2.

As a result, the minimal set of deadlines to consider is dSet∗ = {6, 12, 14, 38}.
Unfortunately, computing the convex hull is in general rather complex. Spe-
cialised algorithms exist in 2 and 3 dimensions that have complexity O(s log(s))

Tasks D T Jobs

τ1 6 8 [0, 6], [8, 14], [16, 22], [24, 30], [32, 38]
τ2 12 13 [0, 12], [13, 25], [26, 38], [39, 51]

Table 2. Example 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

points
hull

Fig. 2. Representation of V(d) in the utilisation space for the tasks in Table 2, together
with the convex hull.

and O(s2), respectively, where s is the number of points in dSet. However, in the
n-dimension case the complexity is O(s⌊

n

2
⌋+1), therefore it grows exponentially

in the number of constraints. The DIT is even more important in the case, as it
can help reduce s before applying the convex-hull algorithm.

7 Conclusion

In this paper we have described the problem of computing the C-Space of a set of
sporadic tasks scheduled by EDF on a single processor. The method amounts to
using the Processor Demand Analysis for generating a set of inequalities that de-
fine the space. We have seen that in practical situations, many of the inequalities
are redundant and can hence be eliminated, reducing the complexity of the C-
Space representation. However, methods for reducing the number of inequalities
are themselves complex and require a certain amount of computation.

We have observed that the concept of Definitely Idle Time can help us re-
ducing the number of constraints to analyse in the case of constrained deadline
systems. The method is particularly effective when the differences between the
relative deadlines and the periods are large. Then, we have proposed a different
point of view on the problem by using a geometric interpretation.

The observations reported in this paper are important for better understand-
ing the complexity of feasibility analysis for single processor systems. While the

problem has been proved to be NP-hard, the facts reported in this paper show
that in practical cases the complexity is rather low. These facts are in accordance
with other results on similar problems, as reported by Zhang and Burns [4].

We believe, however, that the investigation is not concluded. In addition to
the Definitely Idle Time, other properties could be used to further reduce the
set of non-redundant deadlines quickly and more effectively. The results could
shed light on more fundamental properties of the feasibility problem.

References

1. Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. pages 182–190, 1993.

2. S.K. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and complexity concerning
the preemptive scheduling of periodic real-time tasks on one processor. The Journal

of Real-Time Systems, 2, 1990.
3. L. George and J.F. Hermant. Characterization of the space of feasible worst-case ex-

ecution times for earliest-deadline-first scheduling. Journal of Aerospace Computing,

Information, and Communication, 6(11):604–623, 2009.
4. F. Zhang and A. Burns. Schedulability analysis for real-time systems with edf

scheduling. Computers, IEEE Transactions on, 58(9):1250–1258, 2009.

